false

Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market

Detrended cross-correlations and their random matrix limit: an example from the cryptocurrency market ArXiv ID: 2512.06473 “View on arXiv” Authors: Stanisław Drożdż, Paweł Jarosz, Jarosław Kwapień, Maria Skupień, Marcin Wątorek Abstract Correlations in complex systems are often obscured by nonstationarity, long-range memory, and heavy-tailed fluctuations, which limit the usefulness of traditional covariance-based analyses. To address these challenges, we construct scale and fluctuation-dependent correlation matrices using the multifractal detrended cross-correlation coefficient $ρ_r$ that selectively emphasizes fluctuations of different amplitudes. We examine the spectral properties of these detrended correlation matrices and compare them to the spectral properties of the matrices calculated in the same way from synthetic Gaussian and $q$Gaussian signals. Our results show that detrending, heavy tails, and the fluctuation-order parameter $r$ jointly produce spectra, which substantially depart from the random case even under absence of cross-correlations in time series. Applying this framework to one-minute returns of 140 major cryptocurrencies from 2021-2024 reveals robust collective modes, including a dominant market factor and several sectoral components whose strength depends on the analyzed scale and fluctuation order. After filtering out the market mode, the empirical eigenvalue bulk aligns closely with the limit of random detrended cross-correlations, enabling clear identification of structurally significant outliers. Overall, the study provides a refined spectral baseline for detrended cross-correlations and offers a promising tool for distinguishing genuine interdependencies from noise in complex, nonstationary, heavy-tailed systems. ...

December 6, 2025 · 2 min · Research Team

Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litecoin, and Monero

Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litecoin, and Monero ArXiv ID: 2511.22782 “View on arXiv” Authors: Yhlas Sovbetov Abstract This paper examines factors that influence prices of most common five cryptocurrencies such as Bitcoin, Ethereum, Dash, Litecoin, and Monero over 2010-2018 using weekly data. The study employs ARDL technique and documents several findings. First, cryptomarket-related factors such as market beta, trading volume, and volatility appear to be significant determinant for all five cryptocurrencies both in short- and long-run. Second, attractiveness of cryptocurrencies also matters in terms of their price determination, but only in long-run. This indicates that formation (recognition) of the attractiveness of cryptocurrencies are subjected to time factor. In other words, it travels slowly within the market. Third, SP500 index seems to have weak positive long-run impact on Bitcoin, Ethereum, and Litcoin, while its sign turns to negative losing significance in short-run, except Bitcoin that generates an estimate of -0.20 at 10% significance level. Lastly, error-correction models for Bitcoin, Etherem, Dash, Litcoin, and Monero show that cointegrated series cannot drift too far apart, and converge to a long-run equilibrium at a speed of 23.68%, 12.76%, 10.20%, 22.91%, and 14.27% respectively. ...

November 27, 2025 · 2 min · Research Team

Denoising Complex Covariance Matrices with Hybrid ResNet and Random Matrix Theory: Cryptocurrency Portfolio Applications

Denoising Complex Covariance Matrices with Hybrid ResNet and Random Matrix Theory: Cryptocurrency Portfolio Applications ArXiv ID: 2510.19130 “View on arXiv” Authors: Andres Garcia-Medina Abstract Covariance matrices estimated from short, noisy, and non-Gaussian financial time series are notoriously unstable. Empirical evidence suggests that such covariance structures often exhibit power-law scaling, reflecting complex, hierarchical interactions among assets. Motivated by this observation, we introduce a power-law covariance model to characterize collective market dynamics and propose a hybrid estimator that integrates Random Matrix Theory (RMT) with deep Residual Neural Networks (ResNets). The RMT component regularizes the eigenvalue spectrum in high-dimensional noisy settings, while the ResNet learns data-driven corrections that recover latent structural dependencies encoded in the eigenvectors. Monte Carlo simulations show that the proposed ResNet-based estimators consistently minimize both Frobenius and minimum-variance losses across a range of population covariance models. Empirical experiments on 89 cryptocurrencies over the period 2020-2025, using a training window ending at the local Bitcoin peak in November 2021 and testing through the subsequent bear market, demonstrate that a two-step estimator combining hierarchical filtering with ResNet corrections produces the most profitable and well-balanced portfolios, remaining robust across market regime shifts. Beyond finance, the proposed hybrid framework applies broadly to high-dimensional systems described by low-rank deformations of Wishart ensembles, where incorporating eigenvector information enables the detection of multiscale and hierarchical structure that is inaccessible to purely eigenvalue-based methods. ...

October 21, 2025 · 2 min · Research Team

Adaptive Temporal Fusion Transformers for Cryptocurrency Price Prediction

Adaptive Temporal Fusion Transformers for Cryptocurrency Price Prediction ArXiv ID: 2509.10542 “View on arXiv” Authors: Arash Peik, Mohammad Ali Zare Chahooki, Amin Milani Fard, Mehdi Agha Sarram Abstract Precise short-term price prediction in the highly volatile cryptocurrency market is critical for informed trading strategies. Although Temporal Fusion Transformers (TFTs) have shown potential, their direct use often struggles in the face of the market’s non-stationary nature and extreme volatility. This paper introduces an adaptive TFT modeling approach leveraging dynamic subseries lengths and pattern-based categorization to enhance short-term forecasting. We propose a novel segmentation method where subseries end at relative maxima, identified when the price increase from the preceding minimum surpasses a threshold, thus capturing significant upward movements, which act as key markers for the end of a growth phase, while potentially filtering the noise. Crucially, the fixed-length pattern ending each subseries determines the category assigned to the subsequent variable-length subseries, grouping typical market responses that follow similar preceding conditions. A distinct TFT model trained for each category is specialized in predicting the evolution of these subsequent subseries based on their initial steps after the preceding peak. Experimental results on ETH-USDT 10-minute data over a two-month test period demonstrate that our adaptive approach significantly outperforms baseline fixed-length TFT and LSTM models in prediction accuracy and simulated trading profitability. Our combination of adaptive segmentation and pattern-conditioned forecasting enables more robust and responsive cryptocurrency price prediction. ...

September 6, 2025 · 2 min · Research Team

Sentiment-Aware Mean-Variance Portfolio Optimization for Cryptocurrencies

Sentiment-Aware Mean-Variance Portfolio Optimization for Cryptocurrencies ArXiv ID: 2508.16378 “View on arXiv” Authors: Qizhao Chen Abstract This paper presents a dynamic cryptocurrency portfolio optimization strategy that integrates technical indicators and sentiment analysis to enhance investment decision-making. The proposed method employs the 14-day Relative Strength Index (RSI) and 14-day Simple Moving Average (SMA) to capture market momentum, while sentiment scores are extracted from news articles using the VADER (Valence Aware Dictionary and sEntiment Reasoner) model, with compound scores quantifying overall market tone. The large language model Google Gemini is used to further verify the sentiment scores predicted by VADER and give investment decisions. These technical indicator and sentiment signals are incorporated into the expected return estimates before applying mean-variance optimization with constraints on asset weights. The strategy is evaluated through a rolling-window backtest over cryptocurrency market data, with Bitcoin (BTC) and an equal-weighted portfolio of selected cryptocurrencies serving as benchmarks. Experimental results show that the proposed approach achieves a cumulative return of 38.72, substantially exceeding Bitcoin’s 8.85 and the equal-weighted portfolio’s 21.65 over the same period, and delivers a higher Sharpe ratio (1.1093 vs. 0.8853 and 1.0194, respectively). However, the strategy exhibits a larger maximum drawdown (-18.52%) compared to Bitcoin (-4.48%) and the equal-weighted portfolio (-11.02%), indicating higher short-term downside risk. These results highlight the potential of combining sentiment and technical signals to improve cryptocurrency portfolio performance, while also emphasizing the need to address risk exposure in volatile markets. ...

August 22, 2025 · 3 min · Research Team

Probabilistic Forecasting Cryptocurrencies Volatility: From Point to Quantile Forecasts

Probabilistic Forecasting Cryptocurrencies Volatility: From Point to Quantile Forecasts ArXiv ID: 2508.15922 “View on arXiv” Authors: Grzegorz Dudek, Witold Orzeszko, Piotr Fiszeder Abstract Cryptocurrency markets are characterized by extreme volatility, making accurate forecasts essential for effective risk management and informed trading strategies. Traditional deterministic (point) forecasting methods are inadequate for capturing the full spectrum of potential volatility outcomes, underscoring the importance of probabilistic approaches. To address this limitation, this paper introduces probabilistic forecasting methods that leverage point forecasts from a wide range of base models, including statistical (HAR, GARCH, ARFIMA) and machine learning (e.g. LASSO, SVR, MLP, Random Forest, LSTM) algorithms, to estimate conditional quantiles of cryptocurrency realized variance. To the best of our knowledge, this is the first study in the literature to propose and systematically evaluate probabilistic forecasts of variance in cryptocurrency markets based on predictions derived from multiple base models. Our empirical results for Bitcoin demonstrate that the Quantile Estimation through Residual Simulation (QRS) method, particularly when applied to linear base models operating on log-transformed realized volatility data, consistently outperforms more sophisticated alternatives. Additionally, we highlight the robustness of the probabilistic stacking framework, providing comprehensive insights into uncertainty and risk inherent in cryptocurrency volatility forecasting. This research fills a significant gap in the literature, contributing practical probabilistic forecasting methodologies tailored specifically to cryptocurrency markets. ...

August 21, 2025 · 2 min · Research Team

Enhancing Cryptocurrency Sentiment Analysis with Multimodal Features

Enhancing Cryptocurrency Sentiment Analysis with Multimodal Features ArXiv ID: 2508.15825 “View on arXiv” Authors: Chenghao Liu, Aniket Mahanti, Ranesh Naha, Guanghao Wang, Erwann Sbai Abstract As cryptocurrencies gain popularity, the digital asset marketplace becomes increasingly significant. Understanding social media signals offers valuable insights into investor sentiment and market dynamics. Prior research has predominantly focused on text-based platforms such as Twitter. However, video content remains underexplored, despite potentially containing richer emotional and contextual sentiment that is not fully captured by text alone. In this study, we present a multimodal analysis comparing TikTok and Twitter sentiment, using large language models to extract insights from both video and text data. We investigate the dynamic dependencies and spillover effects between social media sentiment and cryptocurrency market indicators. Our results reveal that TikTok’s video-based sentiment significantly influences speculative assets and short-term market trends, while Twitter’s text-based sentiment aligns more closely with long-term dynamics. Notably, the integration of cross-platform sentiment signals improves forecasting accuracy by up to 20%. ...

August 18, 2025 · 2 min · Research Team

Universal Patterns in the Blockchain: Analysis of EOAs and Smart Contracts in ERC20 Token Networks

Universal Patterns in the Blockchain: Analysis of EOAs and Smart Contracts in ERC20 Token Networks ArXiv ID: 2508.04671 “View on arXiv” Authors: Kundan Mukhia, SR Luwang, Md. Nurujjaman, Tanujit Chakraborty, Suman Saha, Chittaranjan Hens Abstract Scaling laws offer a powerful lens to understand complex transactional behaviors in decentralized systems. This study reveals distinctive statistical signatures in the transactional dynamics of ERC20 tokens on the Ethereum blockchain by examining over 44 million token transfers between July 2017 and March 2018 (9-month period). Transactions are categorized into four types: EOA–EOA, EOA–SC, SC-EOA, and SC-SC based on whether the interacting addresses are Externally Owned Accounts (EOAs) or Smart Contracts (SCs), and analyzed across three equal periods (each of 3 months). To identify universal statistical patterns, we investigate the presence of two canonical scaling laws: power law distributions and temporal Taylor’s law (TL). EOA-driven transactions exhibit consistent statistical behavior, including a near-linear relationship between trade volume and unique partners with stable power law exponents ($γ\approx 2.3$), and adherence to TL with scaling coefficients ($β\approx 2.3$). In contrast, interactions involving SCs, especially SC-SC, exhibit sublinear scaling, unstable power-law exponents, and significantly fluctuating Taylor coefficients (variation in $β$ to be $Δβ= 0.51$). Moreover, SC-driven activity displays heavier-tailed distributions ($γ< 2$), indicating bursty and algorithm-driven activity. These findings reveal the characteristic differences between human-controlled and automated transaction behaviors in blockchain ecosystems. By uncovering universal scaling behaviors through the integration of complex systems theory and blockchain data analytics, this work provides a principled framework for understanding the underlying mechanisms of decentralized financial systems. ...

August 6, 2025 · 2 min · Research Team

Measuring DEX Efficiency and The Effect of an Enhanced Routing Method on Both DEX Efficiency and Stakeholders' Benefits

Measuring DEX Efficiency and The Effect of an Enhanced Routing Method on Both DEX Efficiency and Stakeholders’ Benefits ArXiv ID: 2508.03217 “View on arXiv” Authors: Yu Zhang, Claudio J. Tessone Abstract The efficiency of decentralized exchanges (DEXs) and the influence of token routing algorithms on market performance and stakeholder outcomes remain underexplored. This paper introduces the concept of Standardized Total Arbitrage Profit (STAP), computed via convex optimization, as a systematic measure of DEX efficiency. We prove that executing the trade order maximizing STAP and reintegrating the resulting transaction fees eliminates all arbitrage opportunities-both cyclic arbitrage within DEXs and between DEXs and centralized exchanges (CEXs). In a fully efficient DEX (i.e., STAP = 0), the monetary value of target tokens received must not exceed that of the source tokens, regardless of the routing algorithm. Any violation indicates arbitrage potential, making STAP a reliable metric for arbitrage detection. Using a token graph comprising 11 tokens and 18 liquidity pools based on Uniswap V2 data, we observe a decline in DEX efficiency between June 21 and November 8, 2024. Simulations comparing two routing algorithms-Yu Zhang et al.’s line-graph-based method and the depth-first search (DFS) algorithm-show that employing more profitable routing improves DEX efficiency and trader returns over time. Moreover, while total value locked (TVL) remains stable with the line-graph method, it increases under the DFS algorithm, indicating greater aggregate benefits for liquidity providers. ...

August 5, 2025 · 2 min · Research Team

Modeling Loss-Versus-Rebalancing in Automated Market Makers via Continuous-Installment Options

Modeling Loss-Versus-Rebalancing in Automated Market Makers via Continuous-Installment Options ArXiv ID: 2508.02971 “View on arXiv” Authors: Srisht Fateh Singh, Reina Ke Xin Li, Samuel Gaskin, Yuntao Wu, Jeffrey Klinck, Panagiotis Michalopoulos, Zissis Poulos, Andreas Veneris Abstract This paper mathematically models a constant-function automated market maker (CFAMM) position as a portfolio of exotic options, known as perpetual American continuous-installment (CI) options. This model replicates an AMM position’s delta at each point in time over an infinite time horizon, thus taking into account the perpetual nature and optionality to withdraw of liquidity provision. This framework yields two key theoretical results: (a) It proves that the AMM’s adverse-selection cost, loss-versus-rebalancing (LVR), is analytically identical to the continuous funding fees (the time value decay or theta) earned by the at-the-money CI option embedded in the replicating portfolio. (b) A special case of this model derives an AMM liquidity position’s delta profile and boundaries that suffer approximately constant LVR, up to a bounded residual error, over an arbitrarily long forward window. Finally, the paper describes how the constant volatility parameter required by the perpetual option can be calibrated from the term structure of implied volatilities and estimates the errors for both implied volatility calibration and LVR residual error. Thus, this work provides a practical framework enabling liquidity providers to choose an AMM liquidity profile and price boundaries for an arbitrarily long, forward-looking time window where they can expect an approximately constant, price-independent LVR. The results establish a rigorous option-theoretic interpretation of AMMs and their LVR, and provide actionable guidance for liquidity providers in estimating future adverse-selection costs and optimizing position parameters. ...

August 5, 2025 · 3 min · Research Team