false

How Wash Traders Exploit Market Conditions in Cryptocurrency Markets

How Wash Traders Exploit Market Conditions in Cryptocurrency Markets ArXiv ID: 2411.08720 “View on arXiv” Authors: Unknown Abstract Wash trading, the practice of simultaneously placing buy and sell orders for the same asset to inflate trading volume, has been prevalent in cryptocurrency markets. This paper investigates whether wash traders in Bitcoin act deliberately to exploit market conditions and identifies the characteristics of such manipulative behavior. Using a unique dataset of 18 million transactions from Mt. Gox, once the largest Bitcoin exchange, I find that wash trading intensifies when legitimate trading volume is low and diminishes when it is high, indicating strategic timing to maximize impact in less liquid markets. The activity also exhibits spillover effects across platforms and decreases when trading volumes in other asset classes like stocks or gold rise, suggesting sensitivity to broader market dynamics. Additionally, wash traders exploit periods of heightened media attention and online rumors to amplify their influence, causing rapid but short-lived spikes in legitimate trading volume. Using an exogenous demand shock associated with illicit online marketplaces, I find that wash trading responds to contemporaneous events affecting Bitcoin demand. These results advance the understanding of manipulative practices in digital currency markets and have significant implications for regulators aiming to detect and prevent wash trading. ...

November 8, 2024 · 2 min · Research Team

Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach

Financial Time-Series Forecasting: Towards Synergizing Performance And Interpretability Within a Hybrid Machine Learning Approach ArXiv ID: 2401.00534 “View on arXiv” Authors: Unknown Abstract In the realm of cryptocurrency, the prediction of Bitcoin prices has garnered substantial attention due to its potential impact on financial markets and investment strategies. This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability. Specifically, linear regression(OLS, LASSO), long-short term memory(LSTM), decision tree regressors are introduced. Through the grounded experiments, we observe linear regressor achieves the best performance among candidate models. For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting. We believe this work may derive more attention and inspire more researches in the realm of time-series analysis and its realistic applications. ...

December 31, 2023 · 2 min · Research Team