false

Stylized Facts of High-Frequency Bitcoin Time Series

Stylized Facts of High-Frequency Bitcoin Time Series ArXiv ID: 2402.11930 “View on arXiv” Authors: Unknown Abstract This paper analyses the high-frequency intraday Bitcoin dataset from 2019 to 2022. During this time frame, the Bitcoin market index exhibited two distinct periods, 2019-20 and 2021-22, characterized by an abrupt change in volatility. The Bitcoin price returns for both periods can be described by an anomalous diffusion process, transitioning from subdiffusion for short intervals to weak superdiffusion over longer time intervals. The characteristic features related to this anomalous behavior studied in the present paper include heavy tails, which can be described using a $q$-Gaussian distribution and correlations. When we sample the autocorrelation of absolute returns, we observe a power-law relationship, indicating time dependence in both periods initially. The ensemble autocorrelation of the returns decays rapidly. We fitted the autocorrelation with a power law to capture the decay and found that the second period experienced a slightly higher decay rate. The further study involves the analysis of endogenous effects within the Bitcoin time series, which are examined through detrending analysis. We found that both periods are multifractal and present self-similarity in the detrended probability density function (PDF). The Hurst exponent over short time intervals shifts from less than 0.5 ($\sim$ 0.42) in Period 1 to closer to 0.5 in Period 2 ($\sim$ 0.49), indicating that the market has gained efficiency over time. ...

February 19, 2024 · 2 min · Research Team

Emoji Driven Crypto Assets Market Reactions

Emoji Driven Crypto Assets Market Reactions ArXiv ID: 2402.10481 “View on arXiv” Authors: Unknown Abstract In the burgeoning realm of cryptocurrency, social media platforms like Twitter have become pivotal in influencing market trends and investor sentiments. In our study, we leverage GPT-4 and a fine-tuned transformer-based BERT model for a multimodal sentiment analysis, focusing on the impact of emoji sentiment on cryptocurrency markets. By translating emojis into quantifiable sentiment data, we correlate these insights with key market indicators like BTC Price and the VCRIX index. Our architecture’s analysis of emoji sentiment demonstrated a distinct advantage over FinBERT’s pure text sentiment analysis in such predicting power. This approach may be fed into the development of trading strategies aimed at utilizing social media elements to identify and forecast market trends. Crucially, our findings suggest that strategies based on emoji sentiment can facilitate the avoidance of significant market downturns and contribute to the stabilization of returns. This research underscores the practical benefits of integrating advanced AI-driven analyses into financial strategies, offering a nuanced perspective on the interplay between digital communication and market dynamics in an academic context. ...

February 16, 2024 · 2 min · Research Team

Modelling crypto markets by multi-agent reinforcement learning

Modelling crypto markets by multi-agent reinforcement learning ArXiv ID: 2402.10803 “View on arXiv” Authors: Unknown Abstract Building on a previous foundation work (Lussange et al. 2020), this study introduces a multi-agent reinforcement learning (MARL) model simulating crypto markets, which is calibrated to the Binance’s daily closing prices of $153$ cryptocurrencies that were continuously traded between 2018 and 2022. Unlike previous agent-based models (ABM) or multi-agent systems (MAS) which relied on zero-intelligence agents or single autonomous agent methodologies, our approach relies on endowing agents with reinforcement learning (RL) techniques in order to model crypto markets. This integration is designed to emulate, with a bottom-up approach to complexity inference, both individual and collective agents, ensuring robustness in the recent volatile conditions of such markets and during the COVID-19 era. A key feature of our model also lies in the fact that its autonomous agents perform asset price valuation based on two sources of information: the market prices themselves, and the approximation of the crypto assets fundamental values beyond what those market prices are. Our MAS calibration against real market data allows for an accurate emulation of crypto markets microstructure and probing key market behaviors, in both the bearish and bullish regimes of that particular time period. ...

February 16, 2024 · 2 min · Research Team

Intraday Trading Algorithm for Predicting Cryptocurrency Price Movements Using Twitter Big Data Analysis

Intraday Trading Algorithm for Predicting Cryptocurrency Price Movements Using Twitter Big Data Analysis ArXiv ID: 2401.00603 “View on arXiv” Authors: Unknown Abstract Cryptocurrencies have emerged as a novel financial asset garnering significant attention in recent years. A defining characteristic of these digital currencies is their pronounced short-term market volatility, primarily influenced by widespread sentiment polarization, particularly on social media platforms such as Twitter. Recent research has underscored the correlation between sentiment expressed in various networks and the price dynamics of cryptocurrencies. This study delves into the 15-minute impact of informative tweets disseminated through foundation channels on trader behavior, with a focus on potential outcomes related to sentiment polarization. The primary objective is to identify factors that can predict positive price movements and potentially be leveraged through a trading algorithm. To accomplish this objective, we conduct a conditional examination of return and excess return rates within the 15 minutes following tweet publication. The empirical findings reveal statistically significant increases in return rates, particularly within the initial three minutes following tweet publication. Notably, adverse effects resulting from the messages were not observed. Surprisingly, sentiments were found to have no discerni-ble impact on cryptocurrency price movements. Our analysis further identifies that inves-tors are primarily influenced by the quality of tweet content, as reflected in the choice of words and tweet volume. While the basic trading algorithm presented in this study does yield some benefits within the 15-minute timeframe, these benefits are not statistically significant. Nevertheless, it serves as a foundational framework for potential enhance-ments and further investigations. ...

December 31, 2023 · 2 min · Research Team

Towards a Theory of Maximal Extractable Value II: Uncertainty

Towards a Theory of Maximal Extractable Value II: Uncertainty ArXiv ID: 2309.14201 “View on arXiv” Authors: Unknown Abstract Maximal Extractable Value (MEV) is value extractable by temporary monopoly power commonly found in decentralized systems. This extraction stems from a lack of user privacy upon transaction submission and the ability of a monopolist validator to reorder, add, and/or censor transactions. There are two main directions to reduce MEV: reduce the flexibility of the miner to reorder transactions by enforcing ordering rules and/or introduce a competitive market for the right to reorder, add, and/or censor transactions. In this work, we unify these approaches via \emph{“uncertainty principles”}, akin to those found in harmonic analysis and physics. This provides a quantitative trade-off between the freedom to reorder transactions and the complexity of an economic payoff to a user in a decentralized network. This trade off is analogous to the Nyquist-Shannon sampling theorem and demonstrates that sequencing rules in blockchains need to be application specific. Our results suggest that neither so-called fair ordering techniques nor economic mechanisms can individually mitigate MEV for arbitrary payoff functions. ...

September 25, 2023 · 2 min · Research Team

Don't Let MEV Slip: The Costs of Swapping on the Uniswap Protocol

Don’t Let MEV Slip: The Costs of Swapping on the Uniswap Protocol ArXiv ID: 2309.13648 “View on arXiv” Authors: Unknown Abstract We present the first in-depth empirical characterization of the costs of trading on a decentralized exchange (DEX). Using quoted prices from the Uniswap Labs interface for two pools – USDC-ETH (5bps) and PEPE-ETH (30bps) – we evaluate the efficiency of trading on DEXs. Our main tool is slippage – the difference between the realized execution price of a trade, and its quoted price – which we breakdown into its benign and adversarial components. We also present an alternative way to quantify and identify slippage due to adversarial reordering of transactions, which we call reordering slippage, that does not require quoted prices or mempool data to calculate. We find that the composition of transaction costs varies tremendously with the trade’s characteristics. Specifically, while for small swaps, gas costs dominate costs, for large swaps price-impact and slippage account for the majority of it. Moreover, when trading PEPE, a popular ‘memecoin’, the probability of adversarial slippage is about 80% higher than when trading a mature asset like USDC. Overall, our results provide preliminary evidence that DEXs offer a compelling trust-less alternative to centralized exchanges for trading digital assets. ...

September 24, 2023 · 2 min · Research Team

Chance or Chaos? Fractal geometry aimed to inspect the nature of Bitcoin

Chance or Chaos? Fractal geometry aimed to inspect the nature of Bitcoin ArXiv ID: 2309.00390 “View on arXiv” Authors: Unknown Abstract The aim of this paper is to analyse the Bitcoin in order to shed some light on its nature and behaviour. We select 9 cryptocurrencies that account for almost 75% of total market capitalisation and compare their evolution with that of a wide variety of traditional assets: commodities with spot and futures contracts, treasury bonds, stock indices, growth and value stocks. Fractal geometry will be applied to carry out a careful statistical analysis of the performance of the Bitcoin returns. As a main conclusion, we have detected a high degree of persistence in its prices, which decreases the efficiency but increases its predictability. Moreover, we observe that the underlying technology influences price dynamics, with fully decentralised cryptocurrencies being the only ones to exhibit self-similarity features at any time scale. ...

September 1, 2023 · 2 min · Research Team

The Rise and Fall of Cryptocurrencies: Defining the Economic and Social Values of Blockchain Technologies, assessing the Opportunities, and defining the Financial and Cybersecurity Risks of the Metaverse

The Rise and Fall of Cryptocurrencies: Defining the Economic and Social Values of Blockchain Technologies, assessing the Opportunities, and defining the Financial and Cybersecurity Risks of the Metaverse ArXiv ID: 2309.12322 “View on arXiv” Authors: Unknown Abstract This paper contextualises the common queries of “why is crypto crashing?” and “why is crypto down?”, the research transcends beyond the frequent market fluctuations to unravel how cryptocurrencies fundamentally work and the step-by-step process on how to create a cryptocurrency. The study examines blockchain technologies and their pivotal role in the evolving Metaverse, shedding light on topics such as how to invest in cryptocurrency, the mechanics behind crypto mining, and strategies to effectively buy and trade cryptocurrencies. Through an interdisciplinary approach, the research transitions from the fundamental principles of fintech investment strategies to the overarching implications of blockchain within the Metaverse. Alongside exploring machine learning potentials in financial sectors and risk assessment methodologies, the study critically assesses whether developed or developing nations are poised to reap greater benefits from these technologies. Moreover, it probes into both enduring and dubious crypto projects, drawing a distinct line between genuine blockchain applications and Ponzi-like schemes. The conclusion resolutely affirms the continuing dominance of blockchain technologies, underlined by a profound exploration of their intrinsic value and a reflective commentary by the author on the potential risks confronting individual investors. ...

August 9, 2023 · 2 min · Research Team

Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field

Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field ArXiv ID: 2308.01013 “View on arXiv” Authors: Unknown Abstract Identifying the structural dependence between the cryptocurrencies and predicting market trend are fundamental for effective portfolio management in cryptocurrency trading. In this paper, we present a unified Bayesian framework based on potential field theory and Gaussian Process to characterize the structural dependency of various cryptocurrencies, using historic price information. The following are our significant contributions: (i) Proposed a novel model for cryptocurrency price movements as a trajectory of a dynamical system governed by a time-varying non-linear potential field. (ii) Validated the existence of the non-linear potential function in cryptocurrency market through Lyapunov stability analysis. (iii) Developed a Bayesian framework for inferring the non-linear potential function from observed cryptocurrency prices. (iv) Proposed that attractors and repellers inferred from the potential field are reliable cryptocurrency market indicators, surpassing existing attributes, such as, mean, open price or close price of an observation window, in the literature. (v) Analysis of cryptocurrency market during various Bitcoin crash durations from April 2017 to November 2021, shows that attractors captured the market trend, volatility, and correlation. In addition, attractors aids explainability and visualization. (vi) The structural dependence inferred by the proposed approach was found to be consistent with results obtained using the popular wavelet coherence approach. (vii) The proposed market indicators (attractors and repellers) can be used to improve the prediction performance of state-of-art deep learning price prediction models. As, an example, we show improvement in Litecoin price prediction up to a horizon of 12 days. ...

August 2, 2023 · 3 min · Research Team

Exploring the Bitcoin Mesoscale

Exploring the Bitcoin Mesoscale ArXiv ID: 2307.14409 “View on arXiv” Authors: Unknown Abstract The open availability of the entire history of the Bitcoin transactions opens up the possibility to study this system at an unprecedented level of detail. This contribution is devoted to the analysis of the mesoscale structural properties of the Bitcoin User Network (BUN), across its entire history (i.e. from 2009 to 2017). What emerges from our analysis is that the BUN is characterized by a core-periphery structure a deeper analysis of which reveals a certain degree of bow-tieness (i.e. the presence of a Strongly-Connected Component, an IN- and an OUT-component together with some tendrils attached to the IN-component). Interestingly, the evolution of the BUN structural organization experiences fluctuations that seem to be correlated with the presence of bubbles, i.e. periods of price surge and decline observed throughout the entire Bitcoin history: our results, thus, further confirm the interplay between structural quantities and price movements observed in previous analyses. ...

July 13, 2023 · 2 min · Research Team