false

On Bitcoin Price Prediction

On Bitcoin Price Prediction ArXiv ID: 2504.18982 “View on arXiv” Authors: Grégory Bournassenko Abstract In recent years, cryptocurrencies have attracted growing attention from both private investors and institutions. Among them, Bitcoin stands out for its impressive volatility and widespread influence. This paper explores the predictability of Bitcoin’s price movements, drawing a parallel with traditional financial markets. We examine whether the cryptocurrency market operates under the efficient market hypothesis (EMH) or if inefficiencies still allow opportunities for arbitrage. Our methodology combines theoretical reviews, empirical analyses, machine learning approaches, and time series modeling to assess the extent to which Bitcoin’s price can be predicted. We find that while, in general, the Bitcoin market tends toward efficiency, specific conditions, including information asymmetries and behavioral anomalies, occasionally create exploitable inefficiencies. However, these opportunities remain difficult to systematically identify and leverage. Our findings have implications for both investors and policymakers, particularly regarding the regulation of cryptocurrency brokers and derivatives markets. ...

April 26, 2025 · 2 min · Research Team

Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting

Market-Derived Financial Sentiment Analysis: Context-Aware Language Models for Crypto Forecasting ArXiv ID: 2502.14897 “View on arXiv” Authors: Unknown Abstract Financial Sentiment Analysis (FSA) traditionally relies on human-annotated sentiment labels to infer investor sentiment and forecast market movements. However, inferring the potential market impact of words based on their human-perceived intentions is inherently challenging. We hypothesize that the historical market reactions to words, offer a more reliable indicator of their potential impact on markets than subjective sentiment interpretations by human annotators. To test this hypothesis, a market-derived labeling approach is proposed to assign tweet labels based on ensuing short-term price trends, enabling the language model to capture the relationship between textual signals and market dynamics directly. A domain-specific language model was fine-tuned on these labels, achieving up to an 11% improvement in short-term trend prediction accuracy over traditional sentiment-based benchmarks. Moreover, by incorporating market and temporal context through prompt-tuning, the proposed context-aware language model demonstrated an accuracy of 89.6% on a curated dataset of 227 impactful Bitcoin-related news events with significant market impacts. Aggregating daily tweet predictions into trading signals, our method outperformed traditional fusion models (which combine sentiment-based and price-based predictions). It challenged the assumption that sentiment-based signals are inferior to price-based predictions in forecasting market movements. Backtesting these signals across three distinct market regimes yielded robust Sharpe ratios of up to 5.07 in trending markets and 3.73 in neutral markets. Our findings demonstrate that language models can serve as effective short-term market predictors. This paradigm shift underscores the untapped capabilities of language models in financial decision-making and opens new avenues for market prediction applications. ...

February 17, 2025 · 3 min · Research Team

A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin

A Comprehensive Analysis of Machine Learning Models for Algorithmic Trading of Bitcoin ArXiv ID: 2407.18334 “View on arXiv” Authors: Unknown Abstract This study evaluates the performance of 41 machine learning models, including 21 classifiers and 20 regressors, in predicting Bitcoin prices for algorithmic trading. By examining these models under various market conditions, we highlight their accuracy, robustness, and adaptability to the volatile cryptocurrency market. Our comprehensive analysis reveals the strengths and limitations of each model, providing critical insights for developing effective trading strategies. We employ both machine learning metrics (e.g., Mean Absolute Error, Root Mean Squared Error) and trading metrics (e.g., Profit and Loss percentage, Sharpe Ratio) to assess model performance. Our evaluation includes backtesting on historical data, forward testing on recent unseen data, and real-world trading scenarios, ensuring the robustness and practical applicability of our models. Key findings demonstrate that certain models, such as Random Forest and Stochastic Gradient Descent, outperform others in terms of profit and risk management. These insights offer valuable guidance for traders and researchers aiming to leverage machine learning for cryptocurrency trading. ...

July 9, 2024 · 2 min · Research Team

A Data-driven Deep Learning Approach for Bitcoin Price Forecasting

A Data-driven Deep Learning Approach for Bitcoin Price Forecasting ArXiv ID: 2311.06280 “View on arXiv” Authors: Unknown Abstract Bitcoin as a cryptocurrency has been one of the most important digital coins and the first decentralized digital currency. Deep neural networks, on the other hand, has shown promising results recently; however, we require huge amount of high-quality data to leverage their power. There are some techniques such as augmentation that can help us with increasing the dataset size, but we cannot exploit them on historical bitcoin data. As a result, we propose a shallow Bidirectional-LSTM (Bi-LSTM) model, fed with feature engineered data using our proposed method to forecast bitcoin closing prices in a daily time frame. We compare the performance with that of other forecasting methods, and show that with the help of the proposed feature engineering method, a shallow deep neural network outperforms other popular price forecasting models. ...

October 27, 2023 · 2 min · Research Team

Examining the Effect of Monetary Policy and Monetary Policy Uncertainty on Cryptocurrencies Market

Examining the Effect of Monetary Policy and Monetary Policy Uncertainty on Cryptocurrencies Market ArXiv ID: 2311.10739 “View on arXiv” Authors: Unknown Abstract This study investigates the influence of monetary policy and monetary policy uncertainties on Bitcoin returns, utilizing monthly data of BTC, and MPU from July 2010 to August 2023, and employing the Markov Switching Means VAR (MSM-VAR) method. The findings reveal that Bitcoin returns can be categorized into two distinct regimes: 1) regime 1 with low volatility, and 2) regime 2 with high volatility. In both regimes, an increase in MPU leads to a decline in Bitcoin returns: -0.028 in regime 1 and -0.44 in regime 2. This indicates that monetary policy uncertainty exerts a negative influence on Bitcoin returns during both downturns and upswings. Furthermore, the study explores Bitcoin’s sensitivity to Federal Open Market Committee (FOMC) decisions. ...

October 25, 2023 · 2 min · Research Team