false

A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books

A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books ArXiv ID: 2507.14960 “View on arXiv” Authors: Ivan Letteri Abstract The detection of outliers within cryptocurrency limit order books (LOBs) is of paramount importance for comprehending market dynamics, particularly in highly volatile and nascent regulatory environments. This study conducts a comprehensive comparative analysis of robust statistical methods and advanced machine learning techniques for real-time anomaly identification in cryptocurrency LOBs. Within a unified testing environment, named AITA Order Book Signal (AITA-OBS), we evaluate the efficacy of thirteen diverse models to identify which approaches are most suitable for detecting potentially manipulative trading behaviours. An empirical evaluation, conducted via backtesting on a dataset of 26,204 records from a major exchange, demonstrates that the top-performing model, Empirical Covariance (EC), achieves a 6.70% gain, significantly outperforming a standard Buy-and-Hold benchmark. These findings underscore the effectiveness of outlier-driven strategies and provide insights into the trade-offs between model complexity, trade frequency, and performance. This study contributes to the growing corpus of research on cryptocurrency market microstructure by furnishing a rigorous benchmark of anomaly detection models and highlighting their potential for augmenting algorithmic trading and risk management. ...

July 20, 2025 · 2 min · Research Team

Vector Autoregression in Cryptocurrency Markets: Unraveling Complex Causal Networks

Vector Autoregression in Cryptocurrency Markets: Unraveling Complex Causal Networks ArXiv ID: 2308.15769 “View on arXiv” Authors: Unknown Abstract Methodologies to infer financial networks from the price series of speculative assets vary, however, they generally involve bivariate or multivariate predictive modelling to reveal causal and correlational structures within the time series data. The required model complexity intimately relates to the underlying market efficiency, where one expects a highly developed and efficient market to display very few simple relationships in price data. This has spurred research into the applications of complex nonlinear models for developed markets. However, it remains unclear if simple models can provide meaningful and insightful descriptions of the dependency and interconnectedness of the rapidly developed cryptocurrency market. Here we show that multivariate linear models can create informative cryptocurrency networks that reflect economic intuition, and demonstrate the importance of high-influence nodes. The resulting network confirms that node degree, a measure of influence, is significantly correlated to the market capitalisation of each coin ($ρ=0.193$). However, there remains a proportion of nodes whose influence extends beyond what their market capitalisation would imply. We demonstrate that simple linear model structure reveals an inherent complexity associated with the interconnected nature of the data, supporting the use of multivariate modelling to prevent surrogate effects and achieve accurate causal representation. In a reductive experiment we show that most of the network structure is contained within a small portion of the network, consistent with the Pareto principle, whereby a fraction of the inputs generates a large proportion of the effects. Our results demonstrate that simple multivariate models provide nontrivial information about cryptocurrency market dynamics, and that these dynamics largely depend upon a few key high-influence coins. ...

August 30, 2023 · 3 min · Research Team