false

Estimating Covariance for Global Minimum Variance Portfolio: A Decision-Focused Learning Approach

Estimating Covariance for Global Minimum Variance Portfolio: A Decision-Focused Learning Approach ArXiv ID: 2508.10776 “View on arXiv” Authors: Juchan Kim, Inwoo Tae, Yongjae Lee Abstract Portfolio optimization constitutes a cornerstone of risk management by quantifying the risk-return trade-off. Since it inherently depends on accurate parameter estimation under conditions of future uncertainty, the selection of appropriate input parameters is critical for effective portfolio construction. However, most conventional statistical estimators and machine learning algorithms determine these parameters by minimizing mean-squared error (MSE), a criterion that can yield suboptimal investment decisions. In this paper, we adopt decision-focused learning (DFL) - an approach that directly optimizes decision quality rather than prediction error such as MSE - to derive the global minimum-variance portfolio (GMVP). Specifically, we theoretically derive the gradient of decision loss using the analytic solution of GMVP and its properties regarding the principal components of itself. Through extensive empirical evaluation, we show that prediction-focused estimation methods may fail to produce optimal allocations in practice, whereas DFL-based methods consistently deliver superior decision performance. Furthermore, we provide a comprehensive analysis of DFL’s mechanism in GMVP construction, focusing on its volatility reduction capability, decision-driving features, and estimation characteristics. ...

August 14, 2025 · 2 min · Research Team

Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization

Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization ArXiv ID: 2502.00828 “View on arXiv” Authors: Unknown Abstract This paper addresses the critical disconnect between prediction and decision quality in portfolio optimization by integrating Large Language Models (LLMs) with decision-focused learning. We demonstrate both theoretically and empirically that minimizing the prediction error alone leads to suboptimal portfolio decisions. We aim to exploit the representational power of LLMs for investment decisions. An attention mechanism processes asset relationships, temporal dependencies, and macro variables, which are then directly integrated into a portfolio optimization layer. This enables the model to capture complex market dynamics and align predictions with the decision objectives. Extensive experiments on S&P100 and DOW30 datasets show that our model consistently outperforms state-of-the-art deep learning models. In addition, gradient-based analyses show that our model prioritizes the assets most crucial to decision making, thus mitigating the effects of prediction errors on portfolio performance. These findings underscore the value of integrating decision objectives into predictions for more robust and context-aware portfolio management. ...

February 2, 2025 · 2 min · Research Team

Return Prediction for Mean-Variance Portfolio Selection: How Decision-Focused Learning Shapes Forecasting Models

Return Prediction for Mean-Variance Portfolio Selection: How Decision-Focused Learning Shapes Forecasting Models ArXiv ID: 2409.09684 “View on arXiv” Authors: Unknown Abstract Markowitz laid the foundation of portfolio theory through the mean-variance optimization (MVO) framework. However, the effectiveness of MVO is contingent on the precise estimation of expected returns, variances, and covariances of asset returns, which are typically uncertain. Machine learning models are becoming useful in estimating uncertain parameters, and such models are trained to minimize prediction errors, such as mean squared errors (MSE), which treat prediction errors uniformly across assets. Recent studies have pointed out that this approach would lead to suboptimal decisions and proposed Decision-Focused Learning (DFL) as a solution, integrating prediction and optimization to improve decision-making outcomes. While studies have shown DFL’s potential to enhance portfolio performance, the detailed mechanisms of how DFL modifies prediction models for MVO remain unexplored. This study investigates how DFL adjusts stock return prediction models to optimize decisions in MVO. Theoretically, we show that DFL’s gradient can be interpreted as tilting the MSE-based prediction errors by the inverse covariance matrix, effectively incorporating inter-asset correlations into the learning process, while MSE treats each asset’s error independently. This tilting mechanism leads to systematic prediction biases where DFL overestimates returns for assets included in portfolios while underestimating excluded assets. Our findings reveal why DFL achieves superior portfolio performance despite higher prediction errors. The strategic biases are features, not flaws. ...

September 15, 2024 · 2 min · Research Team