false

CreditARF: A Framework for Corporate Credit Rating with Annual Report and Financial Feature Integration

CreditARF: A Framework for Corporate Credit Rating with Annual Report and Financial Feature Integration ArXiv ID: 2508.02738 “View on arXiv” Authors: Yumeng Shi, Zhongliang Yang, DiYang Lu, Yisi Wang, Yiting Zhou, Linna Zhou Abstract Corporate credit rating serves as a crucial intermediary service in the market economy, playing a key role in maintaining economic order. Existing credit rating models rely on financial metrics and deep learning. However, they often overlook insights from non-financial data, such as corporate annual reports. To address this, this paper introduces a corporate credit rating framework that integrates financial data with features extracted from annual reports using FinBERT, aiming to fully leverage the potential value of unstructured text data. In addition, we have developed a large-scale dataset, the Comprehensive Corporate Rating Dataset (CCRD), which combines both traditional financial data and textual data from annual reports. The experimental results show that the proposed method improves the accuracy of the rating predictions by 8-12%, significantly improving the effectiveness and reliability of corporate credit ratings. ...

August 2, 2025 · 2 min · Research Team

Forecasting Labor Markets with LSTNet: A Multi-Scale Deep Learning Approach

Forecasting Labor Markets with LSTNet: A Multi-Scale Deep Learning Approach ArXiv ID: 2507.01979 “View on arXiv” Authors: Adam Nelson-Archer, Aleia Sen, Meena Al Hasani, Sofia Davila, Jessica Le, Omar Abbouchi Abstract We present a deep learning approach for forecasting short-term employment changes and assessing long-term industry health using labor market data from the U.S. Bureau of Labor Statistics. Our system leverages a Long- and Short-Term Time-series Network (LSTNet) to process multivariate time series data, including employment levels, wages, turnover rates, and job openings. The model outputs both 7-day employment forecasts and an interpretable Industry Employment Health Index (IEHI). Our approach outperforms baseline models across most sectors, particularly in stable industries, and demonstrates strong alignment between IEHI rankings and actual employment volatility. We discuss error patterns, sector-specific performance, and future directions for improving interpretability and generalization. ...

June 25, 2025 · 2 min · Research Team

TIP-Search: Time-Predictable Inference Scheduling for Market Prediction under Uncertain Load

TIP-Search: Time-Predictable Inference Scheduling for Market Prediction under Uncertain Load ArXiv ID: 2506.08026 “View on arXiv” Authors: Xibai Wang Abstract This paper proposes TIP-Search, a time-predictable inference scheduling framework for real-time market prediction under uncertain workloads. Motivated by the strict latency demands in high-frequency financial systems, TIP-Search dynamically selects a deep learning model from a heterogeneous pool, aiming to maximize predictive accuracy while satisfying per-task deadline constraints. Our approach profiles latency and generalization performance offline, then performs online task-aware selection without relying on explicit input domain labels. We evaluate TIP-Search on three real-world limit order book datasets (FI-2010, Binance BTC/USDT, LOBSTER AAPL) and demonstrate that it outperforms static baselines with up to 8.5% improvement in accuracy and 100% deadline satisfaction. Our results highlight the effectiveness of TIP-Search in robust low-latency financial inference under uncertainty. ...

May 30, 2025 · 2 min · Research Team

Forecasting Nigerian Equity Stock Returns Using Long Short-Term Memory Technique

Forecasting Nigerian Equity Stock Returns Using Long Short-Term Memory Technique ArXiv ID: 2507.01964 “View on arXiv” Authors: Adebola K. Ojo, Ifechukwude Jude Okafor Abstract Investors and stock market analysts face major challenges in predicting stock returns and making wise investment decisions. The predictability of equity stock returns can boost investor confidence, but it remains a difficult task. To address this issue, a study was conducted using a Long Short-term Memory (LSTM) model to predict future stock market movements. The study used a historical dataset from the Nigerian Stock Exchange (NSE), which was cleaned and normalized to design the LSTM model. The model was evaluated using performance metrics and compared with other deep learning models like Artificial and Convolutional Neural Networks (CNN). The experimental results showed that the LSTM model can predict future stock market prices and returns with over 90% accuracy when trained with a reliable dataset. The study concludes that LSTM models can be useful in predicting financial time-series-related problems if well-trained. Future studies should explore combining LSTM models with other deep learning techniques like CNN to create hybrid models that mitigate the risks associated with relying on a single model for future equity stock predictions. ...

May 27, 2025 · 2 min · Research Team

NewsNet-SDF: Stochastic Discount Factor Estimation with Pretrained Language Model News Embeddings via Adversarial Networks

NewsNet-SDF: Stochastic Discount Factor Estimation with Pretrained Language Model News Embeddings via Adversarial Networks ArXiv ID: 2505.06864 “View on arXiv” Authors: Shunyao Wang, Ming Cheng, Christina Dan Wang Abstract Stochastic Discount Factor (SDF) models provide a unified framework for asset pricing and risk assessment, yet traditional formulations struggle to incorporate unstructured textual information. We introduce NewsNet-SDF, a novel deep learning framework that seamlessly integrates pretrained language model embeddings with financial time series through adversarial networks. Our multimodal architecture processes financial news using GTE-multilingual models, extracts temporal patterns from macroeconomic data via LSTM networks, and normalizes firm characteristics, fusing these heterogeneous information sources through an innovative adversarial training mechanism. Our dataset encompasses approximately 2.5 million news articles and 10,000 unique securities, addressing the computational challenges of processing and aligning text data with financial time series. Empirical evaluations on U.S. equity data (1980-2022) demonstrate NewsNet-SDF substantially outperforms alternatives with a Sharpe ratio of 2.80. The model shows a 471% improvement over CAPM, over 200% improvement versus traditional SDF implementations, and a 74% reduction in pricing errors compared to the Fama-French five-factor model. In comprehensive comparisons, our deep learning approach consistently outperforms traditional, modern, and other neural asset pricing models across all key metrics. Ablation studies confirm that text embeddings contribute significantly more to model performance than macroeconomic features, with news-derived principal components ranking among the most influential determinants of SDF dynamics. These results validate the effectiveness of our multimodal deep learning approach in integrating unstructured text with traditional financial data for more accurate asset pricing, providing new insights for digital intelligent decision-making in financial technology. ...

May 11, 2025 · 2 min · Research Team

Multilayer Perceptron Neural Network Models in Asset Pricing: An Empirical Study on Large-Cap US Stocks

Multilayer Perceptron Neural Network Models in Asset Pricing: An Empirical Study on Large-Cap US Stocks ArXiv ID: 2505.01921 “View on arXiv” Authors: Shanyan Lai Abstract In this study, MLP models with dynamic structure are applied to factor models for asset pricing tasks. Concretely, the MLP pyramid model structure was employed on firm-characteristic-sorted portfolio factors for modelling the large-capital US stocks. It was further developed as a practicable factor investing strategy based on the predictions. The main findings in this chapter were evaluated from two angles: model performance and investing performance, which were compared from the periods with and without COVID-19. The empirical results indicated that with the restrictions of the data size, the MLP models no longer perform “deeper, better”, while the proposed MLP models with two and three hidden layers have higher flexibility to model the factors in this case. This study also verified the idea of previous works that MLP models for factor investing have more meaning in the downside risk control than in pursuing the absolute annual returns. ...

May 3, 2025 · 2 min · Research Team

Asset Pricing in Pre-trained Transformer

Asset Pricing in Pre-trained Transformer ArXiv ID: 2505.01575 “View on arXiv” Authors: Shanyan Lai Abstract This paper proposes an innovative Transformer model, Single-directional representative from Transformer (SERT), for US large capital stock pricing. It also innovatively applies the pre-trained Transformer models under the stock pricing and factor investment context. They are compared with standard Transformer models and encoder-only Transformer models in three periods covering the entire COVID-19 pandemic to examine the model adaptivity and suitability during the extreme market fluctuations. Namely, pre-COVID-19 period (mild up-trend), COVID-19 period (sharp up-trend with deep down shock) and 1-year post-COVID-19 (high fluctuation sideways movement). The best proposed SERT model achieves the highest out-of-sample R2, 11.2% and 10.91% respectively, when extreme market fluctuation takes place followed by pre-trained Transformer models (10.38% and 9.15%). Their Trend-following-based strategy wise performance also proves their excellent capability for hedging downside risks during market shocks. The proposed SERT model achieves a Sortino ratio 47% higher than the buy-and-hold benchmark in the equal-weighted portfolio and 28% higher in the value-weighted portfolio when the pandemic period is attended. It proves that Transformer models have a great capability to capture patterns of temporal sparsity data in the asset pricing factor model, especially with considerable volatilities. We also find the softmax signal filter as the common configuration of Transformer models in alternative contexts, which only eliminates differences between models, but does not improve strategy-wise performance, while increasing attention heads improve the model performance insignificantly and applying the ’layer norm first’ method do not boost the model performance in our case. ...

May 2, 2025 · 2 min · Research Team

A new architecture of high-order deep neural networks that learn martingales

A new architecture of high-order deep neural networks that learn martingales ArXiv ID: 2505.03789 “View on arXiv” Authors: Syoiti Ninomiya, Yuming Ma Abstract A new deep-learning neural network architecture based on high-order weak approximation algorithms for stochastic differential equations (SDEs) is proposed. The architecture enables the efficient learning of martingales by deep learning models. The behaviour of deep neural networks based on this architecture, when applied to the problem of pricing financial derivatives, is also examined. The core of this new architecture lies in the high-order weak approximation algorithms of the explicit Runge–Kutta type, wherein the approximation is realised solely through iterative compositions and linear combinations of vector fields of the target SDEs. ...

May 1, 2025 · 2 min · Research Team

Deep Learning Models Meet Financial Data Modalities

Deep Learning Models Meet Financial Data Modalities ArXiv ID: 2504.13521 “View on arXiv” Authors: Unknown Abstract Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications. ...

April 18, 2025 · 2 min · Research Team

From Deep Learning to LLMs: A survey of AI in Quantitative Investment

From Deep Learning to LLMs: A survey of AI in Quantitative Investment ArXiv ID: 2503.21422 “View on arXiv” Authors: Unknown Abstract Quantitative investment (quant) is an emerging, technology-driven approach in asset management, increasingy shaped by advancements in artificial intelligence. Recent advances in deep learning and large language models (LLMs) for quant finance have improved predictive modeling and enabled agent-based automation, suggesting a potential paradigm shift in this field. In this survey, taking alpha strategy as a representative example, we explore how AI contributes to the quantitative investment pipeline. We first examine the early stage of quant research, centered on human-crafted features and traditional statistical models with an established alpha pipeline. We then discuss the rise of deep learning, which enabled scalable modeling across the entire pipeline from data processing to order execution. Building on this, we highlight the emerging role of LLMs in extending AI beyond prediction, empowering autonomous agents to process unstructured data, generate alphas, and support self-iterative workflows. ...

March 27, 2025 · 2 min · Research Team