false

HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction

HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction ArXiv ID: 2503.15403 “View on arXiv” Authors: Unknown Abstract Financial time-series forecasting remains a challenging task due to complex temporal dependencies and market fluctuations. This study explores the potential of hybrid quantum-classical approaches to assist in financial trend prediction by leveraging quantum resources for improved feature representation and learning. A custom Quantum Neural Network (QNN) regressor is introduced, designed with a novel ansatz tailored for financial applications. Two hybrid optimization strategies are proposed: (1) a sequential approach where classical recurrent models (RNN/LSTM) extract temporal dependencies before quantum processing, and (2) a joint learning framework that optimizes classical and quantum parameters simultaneously. Systematic evaluation using TimeSeriesSplit, k-fold cross-validation, and predictive error analysis highlights the ability of these hybrid models to integrate quantum computing into financial forecasting workflows. The findings demonstrate how quantum-assisted learning can contribute to financial modeling, offering insights into the practical role of quantum resources in time-series analysis. ...

March 19, 2025 · 2 min · Research Team

The deep multi-FBSDE method: a robust deep learning method for coupled FBSDEs

The deep multi-FBSDE method: a robust deep learning method for coupled FBSDEs ArXiv ID: 2503.13193 “View on arXiv” Authors: Unknown Abstract We introduce the deep multi-FBSDE method for robust approximation of coupled forward-backward stochastic differential equations (FBSDEs), focusing on cases where the deep BSDE method of Han, Jentzen, and E (2018) fails to converge. To overcome the convergence issues, we consider a family of FBSDEs that are equivalent to the original problem in the sense that they satisfy the same associated partial differential equation (PDE). Our algorithm proceeds in two phases: first, we approximate the initial condition for the FBSDE family, and second, we approximate the original FBSDE using the initial condition approximated in the first phase. Numerical experiments show that our method converges even when the standard deep BSDE method does not. ...

March 17, 2025 · 2 min · Research Team

Label Unbalance in High-frequency Trading

Label Unbalance in High-frequency Trading ArXiv ID: 2503.09988 “View on arXiv” Authors: Unknown Abstract In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading . ...

March 13, 2025 · 2 min · Research Team

BiHRNN -- Bi-Directional Hierarchical Recurrent Neural Network for Inflation Forecasting

BiHRNN – Bi-Directional Hierarchical Recurrent Neural Network for Inflation Forecasting ArXiv ID: 2503.01893 “View on arXiv” Authors: Unknown Abstract Inflation prediction guides decisions on interest rates, investments, and wages, playing a key role in economic stability. Yet accurate forecasting is challenging due to dynamic factors and the layered structure of the Consumer Price Index, which organizes goods and services into multiple categories. We propose the Bi-directional Hierarchical Recurrent Neural Network (BiHRNN) model to address these challenges by leveraging the hierarchical structure to enable bidirectional information flow between levels. Informative constraints on the RNN parameters enhance predictive accuracy at all levels without the inefficiencies of a unified model. We validated BiHRNN on inflation datasets from the United States, Canada, and Norway by training, tuning hyperparameters, and experimenting with various loss functions. Our results demonstrate that BiHRNN significantly outperforms traditional RNN models, with its bidirectional architecture playing a pivotal role in achieving improved forecasting accuracy. ...

February 27, 2025 · 2 min · Research Team

Recurrent Neural Networks for Dynamic VWAP Execution: Adaptive Trading Strategies with Temporal Kolmogorov-Arnold Networks

Recurrent Neural Networks for Dynamic VWAP Execution: Adaptive Trading Strategies with Temporal Kolmogorov-Arnold Networks ArXiv ID: 2502.18177 “View on arXiv” Authors: Unknown Abstract The execution of Volume Weighted Average Price (VWAP) orders remains a critical challenge in modern financial markets, particularly as trading volumes and market complexity continue to increase. In my previous work arXiv:2502.13722, I introduced a novel deep learning approach that demonstrated significant improvements over traditional VWAP execution methods by directly optimizing the execution problem rather than relying on volume curve predictions. However, that model was static because it employed the fully linear approach described in arXiv:2410.21448, which is not designed for dynamic adjustment. This paper extends that foundation by developing a dynamic neural VWAP framework that adapts to evolving market conditions in real time. We introduce two key innovations: first, the integration of recurrent neural networks to capture complex temporal dependencies in market dynamics, and second, a sophisticated dynamic adjustment mechanism that continuously optimizes execution decisions based on market feedback. The empirical analysis, conducted across five major cryptocurrency markets, demonstrates that this dynamic approach achieves substantial improvements over both traditional methods and our previous static implementation, with execution performance gains of 10 to 15% in liquid markets and consistent outperformance across varying conditions. These results suggest that adaptive neural architectures can effectively address the challenges of modern VWAP execution while maintaining computational efficiency suitable for practical deployment. ...

February 25, 2025 · 2 min · Research Team

Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies

Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies ArXiv ID: 2502.15853 “View on arXiv” Authors: Unknown Abstract This paper presents a comprehensive study on stock price prediction, leveragingadvanced machine learning (ML) and deep learning (DL) techniques to improve financial forecasting accuracy. The research evaluates the performance of various recurrent neural network (RNN) architectures, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), and attention-based models. These models are assessed for their ability to capture complex temporal dependencies inherent in stock market data. Our findings show that attention-based models outperform other architectures, achieving the highest accuracy by capturing both short and long-term dependencies. This study contributes valuable insights into AI-driven financial forecasting, offering practical guidance for developing more accurate and efficient trading systems. ...

February 21, 2025 · 2 min · Research Team

A Novel Loss Function for Deep Learning Based Daily Stock Trading System

A Novel Loss Function for Deep Learning Based Daily Stock Trading System ArXiv ID: 2502.17493 “View on arXiv” Authors: Unknown Abstract Making consistently profitable financial decisions in a continuously evolving and volatile stock market has always been a difficult task. Professionals from different disciplines have developed foundational theories to anticipate price movement and evaluate securities such as the famed Capital Asset Pricing Model (CAPM). In recent years, the role of artificial intelligence (AI) in asset pricing has been growing. Although the black-box nature of deep learning models lacks interpretability, they have continued to solidify their position in the financial industry. We aim to further enhance AI’s potential and utility by introducing a return-weighted loss function that will drive top growth while providing the ML models a limited amount of information. Using only publicly accessible stock data (open/close/high/low, trading volume, sector information) and several technical indicators constructed from them, we propose an efficient daily trading system that detects top growth opportunities. Our best models achieve 61.73% annual return on daily rebalancing with an annualized Sharpe Ratio of 1.18 over 1340 testing days from 2019 to 2024, and 37.61% annual return with an annualized Sharpe Ratio of 0.97 over 1360 testing days from 2005 to 2010. The main drivers for success, especially independent of any domain knowledge, are the novel return-weighted loss function, the integration of categorical and continuous data, and the ML model architecture. We also demonstrate the superiority of our novel loss function over traditional loss functions via several performance metrics and statistical evidence. ...

February 20, 2025 · 2 min · Research Team

Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve

Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve ArXiv ID: 2502.13722 “View on arXiv” Authors: Unknown Abstract Volume-Weighted Average Price (VWAP) is arguably the most prevalent benchmark for trade execution as it provides an unbiased standard for comparing performance across market participants. However, achieving VWAP is inherently challenging due to its dependence on two dynamic factors, volumes and prices. Traditional approaches typically focus on forecasting the market’s volume curve, an assumption that may hold true under steady conditions but becomes suboptimal in more volatile environments or markets such as cryptocurrency where prediction error margins are higher. In this study, I propose a deep learning framework that directly optimizes the VWAP execution objective by bypassing the intermediate step of volume curve prediction. Leveraging automatic differentiation and custom loss functions, my method calibrates order allocation to minimize VWAP slippage, thereby fully addressing the complexities of the execution problem. My results demonstrate that this direct optimization approach consistently achieves lower VWAP slippage compared to conventional methods, even when utilizing a naive linear model presented in arXiv:2410.21448. They validate the observation that strategies optimized for VWAP performance tend to diverge from accurate volume curve predictions and thus underscore the advantage of directly modeling the execution objective. This research contributes a more efficient and robust framework for VWAP execution in volatile markets, illustrating the potential of deep learning in complex financial systems where direct objective optimization is crucial. Although my empirical analysis focuses on cryptocurrency markets, the underlying principles of the framework are readily applicable to other asset classes such as equities. ...

February 19, 2025 · 2 min · Research Team

Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review

Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review ArXiv ID: 2502.00201 “View on arXiv” Authors: Unknown Abstract This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection, a critical issue in the financial sector. Using the Kitchenham systematic literature review approach, 57 studies published between 2019 and 2024 were analyzed. The review highlights the effectiveness of various deep learning models such as Convolutional Neural Networks, Long Short-Term Memory, and transformers across domains such as credit card transactions, insurance claims, and financial statement audits. Performance metrics such as precision, recall, F1-score, and AUC-ROC were evaluated. Key themes explored include the impact of data privacy frameworks and advancements in feature engineering and data preprocessing. The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations, alongside opportunities for automation and privacy-preserving techniques such as blockchain integration and Principal Component Analysis. By examining trends over the past five years, this review identifies critical gaps and promising directions for advancing DL applications in financial fraud detection, offering actionable insights for researchers and practitioners. ...

January 31, 2025 · 2 min · Research Team

Transformer Based Time-Series Forecasting for Stock

Transformer Based Time-Series Forecasting for Stock ArXiv ID: 2502.09625 “View on arXiv” Authors: Unknown Abstract To the naked eye, stock prices are considered chaotic, dynamic, and unpredictable. Indeed, it is one of the most difficult forecasting tasks that hundreds of millions of retail traders and professional traders around the world try to do every second even before the market opens. With recent advances in the development of machine learning and the amount of data the market generated over years, applying machine learning techniques such as deep learning neural networks is unavoidable. In this work, we modeled the task as a multivariate forecasting problem, instead of a naive autoregression problem. The multivariate analysis is done using the attention mechanism via applying a mutated version of the Transformer, “Stockformer”, which we created. ...

January 29, 2025 · 2 min · Research Team