false

Convergence of a Deep BSDE solver with jumps

Convergence of a Deep BSDE solver with jumps ArXiv ID: 2501.09727 “View on arXiv” Authors: Unknown Abstract We study the error arising in the numerical approximation of FBSDEs and related PIDEs by means of a deep learning-based method. Our results focus on decoupled FBSDEs with jumps and extend the seminal work of HAn and Long (2020) analyzing the numerical error of the deep BSDE solver proposed in E et al. (2017). We provide a priori and a posteriori error estimates for the finite and infinite activity case. ...

January 16, 2025 · 1 min · Research Team

Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure

Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure ArXiv ID: 2501.09760 “View on arXiv” Authors: Unknown Abstract Accurate stock market prediction provides great opportunities for informed decision-making, yet existing methods struggle with financial data’s non-linear, high-dimensional, and volatile characteristics. Advanced predictive models are needed to effectively address these complexities. This paper proposes a novel multi-layer hybrid multi-task learning (MTL) framework aimed at achieving more efficient stock market predictions. It involves a Transformer encoder to extract complex correspondences between various input features, a Bidirectional Gated Recurrent Unit (BiGRU) to capture long-term temporal relationships, and a Kolmogorov-Arnold Network (KAN) to enhance the learning process. Experimental evaluations indicate that the proposed learning structure achieves great performance, with an MAE as low as 1.078, a MAPE as low as 0.012, and an R^2 as high as 0.98, when compared with other competitive networks. ...

January 1, 2025 · 2 min · Research Team

Collaborative Optimization in Financial Data Mining Through Deep Learning and ResNeXt

Collaborative Optimization in Financial Data Mining Through Deep Learning and ResNeXt ArXiv ID: 2412.17314 “View on arXiv” Authors: Unknown Abstract This study proposes a multi-task learning framework based on ResNeXt, aiming to solve the problem of feature extraction and task collaborative optimization in financial data mining. Financial data usually has the complex characteristics of high dimensionality, nonlinearity, and time series, and is accompanied by potential correlations between multiple tasks, making it difficult for traditional methods to meet the needs of data mining. This study introduces the ResNeXt model into the multi-task learning framework and makes full use of its group convolution mechanism to achieve efficient extraction of local patterns and global features of financial data. At the same time, through the design of task sharing layers and dedicated layers, it is established between multiple related tasks. Deep collaborative optimization relationships. Through flexible multi-task loss weight design, the model can effectively balance the learning needs of different tasks and improve overall performance. Experiments are conducted on a real S&P 500 financial data set, verifying the significant advantages of the proposed framework in classification and regression tasks. The results indicate that, when compared to other conventional deep learning models, the proposed method delivers superior performance in terms of accuracy, F1 score, root mean square error, and other metrics, highlighting its outstanding effectiveness and robustness in handling complex financial data. This research provides an efficient and adaptable solution for financial data mining, and at the same time opens up a new research direction for the combination of multi-task learning and deep learning, which has important theoretical significance and practical application value. ...

December 23, 2024 · 2 min · Research Team

Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting

Leveraging Time Series Categorization and Temporal Fusion Transformers to Improve Cryptocurrency Price Forecasting ArXiv ID: 2412.14529 “View on arXiv” Authors: Unknown Abstract Organizing and managing cryptocurrency portfolios and decision-making on transactions is crucial in this market. Optimal selection of assets is one of the main challenges that requires accurate prediction of the price of cryptocurrencies. In this work, we categorize the financial time series into several similar subseries to increase prediction accuracy by learning each subseries category with similar behavior. For each category of the subseries, we create a deep learning model based on the attention mechanism to predict the next step of each subseries. Due to the limited amount of cryptocurrency data for training models, if the number of categories increases, the amount of training data for each model will decrease, and some complex models will not be trained well due to the large number of parameters. To overcome this challenge, we propose to combine the time series data of other cryptocurrencies to increase the amount of data for each category, hence increasing the accuracy of the models corresponding to each category. ...

December 19, 2024 · 2 min · Research Team

A Deep Learning Approach for Trading Factor Residuals

A Deep Learning Approach for Trading Factor Residuals ArXiv ID: 2412.11432 “View on arXiv” Authors: Unknown Abstract The residuals in factor models prevalent in asset pricing presents opportunities to exploit the mis-pricing from unexplained cross-sectional variation for arbitrage. We performed a replication of the methodology of Guijarro-Ordonez et al. (2019) (G-P-Z) on Deep Learning Statistical Arbitrage (DLSA), originally applied to U.S. equity data from 1998 to 2016, using a more recent out-of-sample period from 2016 to 2024. Adhering strictly to point-in-time (PIT) principles and ensuring no information leakage, we follow the same data pre-processing, factor modeling, and deep learning architectures (CNNs and Transformers) as outlined by G-P-Z. Our replication yields unusually strong performance metrics in certain tests, with out-of-sample Sharpe ratios occasionally exceeding 10. While such results are intriguing, they may indicate model overfitting, highly specific market conditions, or insufficient accounting for transaction costs and market impact. Further examination and robustness checks are needed to align these findings with the more modest improvements reported in the original study. (This work was conducted as the final project for IEOR 4576: Data-Driven Methods in Finance at Columbia University.) ...

December 16, 2024 · 2 min · Research Team

Geometric Deep Learning for Realized Covariance Matrix Forecasting

Geometric Deep Learning for Realized Covariance Matrix Forecasting ArXiv ID: 2412.09517 “View on arXiv” Authors: Unknown Abstract Traditional methods employed in matrix volatility forecasting often overlook the inherent Riemannian manifold structure of symmetric positive definite matrices, treating them as elements of Euclidean space, which can lead to suboptimal predictive performance. Moreover, they often struggle to handle high-dimensional matrices. In this paper, we propose a novel approach for forecasting realized covariance matrices of asset returns using a Riemannian-geometry-aware deep learning framework. In this way, we account for the geometric properties of the covariance matrices, including possible non-linear dynamics and efficient handling of high-dimensionality. Moreover, building upon a Fréchet sample mean of realized covariance matrices, we are able to extend the HAR model to the matrix-variate. We demonstrate the efficacy of our approach using daily realized covariance matrices for the 50 most capitalized companies in the S&P 500 index, showing that our method outperforms traditional approaches in terms of predictive accuracy. ...

December 12, 2024 · 2 min · Research Team

Deep learning interpretability for rough volatility

Deep learning interpretability for rough volatility ArXiv ID: 2411.19317 “View on arXiv” Authors: Unknown Abstract Deep learning methods have become a widespread toolbox for pricing and calibration of financial models. While they often provide new directions and research results, their `black box’ nature also results in a lack of interpretability. We provide a detailed interpretability analysis of these methods in the context of rough volatility - a new class of volatility models for Equity and FX markets. Our work sheds light on the neural network learned inverse map between the rough volatility model parameters, seen as mathematical model inputs and network outputs, and the resulting implied volatility across strikes and maturities, seen as mathematical model outputs and network inputs. This contributes to building a solid framework for a safer use of neural networks in this context and in quantitative finance more generally. ...

November 28, 2024 · 2 min · Research Team

Quantile deep learning models for multi-step ahead time series prediction

Quantile deep learning models for multi-step ahead time series prediction ArXiv ID: 2411.15674 “View on arXiv” Authors: Unknown Abstract Uncertainty quantification is crucial in time series prediction, and quantile regression offers a valuable mechanism for uncertainty quantification which is useful for extreme value forecasting. Although deep learning models have been prominent in multi-step ahead prediction, the development and evaluation of quantile deep learning models have been limited. We present a novel quantile regression deep learning framework for multi-step time series prediction. In this way, we elevate the capabilities of deep learning models by incorporating quantile regression, thus providing a more nuanced understanding of predictive values. We provide an implementation of prominent deep learning models for multi-step ahead time series prediction and evaluate their performance under high volatility and extreme conditions. We include multivariate and univariate modelling, strategies and provide a comparison with conventional deep learning models from the literature. Our models are tested on two cryptocurrencies: Bitcoin and Ethereum, using daily close-price data and selected benchmark time series datasets. The results show that integrating a quantile loss function with deep learning provides additional predictions for selected quantiles without a loss in the prediction accuracy when compared to the literature. Our quantile model has the ability to handle volatility more effectively and provides additional information for decision-making and uncertainty quantification through the use of quantiles when compared to conventional deep learning models. ...

November 24, 2024 · 2 min · Research Team

The Role of AI in Financial Forecasting: ChatGPT's Potential and Challenges

The Role of AI in Financial Forecasting: ChatGPT’s Potential and Challenges ArXiv ID: 2411.13562 “View on arXiv” Authors: Unknown Abstract The outlook for the future of artificial intelligence (AI) in the financial sector, especially in financial forecasting, the challenges and implications. The dynamics of AI technology, including deep learning, reinforcement learning, and integration with blockchAIn and the Internet of Things, also highlight the continued improvement in data processing capabilities. Explore how AI is reshaping financial services with precisely tAIlored services that can more precisely meet the diverse needs of individual investors. The integration of AI challenges regulatory and ethical issues in the financial sector, as well as the implications for data privacy protection. Analyze the limitations of current AI technology in financial forecasting and its potential impact on the future financial industry landscape, including changes in the job market, the emergence of new financial institutions, and user interface innovations. Emphasizing the importance of increasing investor understanding and awareness of AI and looking ahead to future trends in AI tools for user experience to drive wider adoption of AI in financial decision making. The huge potential, challenges, and future directions of AI in the financial sector highlight the critical role of AI technology in driving transformation and innovation in the financial sector ...

November 7, 2024 · 2 min · Research Team

Deep Learning in Long-Short Stock Portfolio Allocation: An Empirical Study

Deep Learning in Long-Short Stock Portfolio Allocation: An Empirical Study ArXiv ID: 2411.13555 “View on arXiv” Authors: Unknown Abstract This paper provides an empirical study explores the application of deep learning algorithms-Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Transformer-in constructing long-short stock portfolios. Two datasets comprising randomly selected stocks from the S&P500 and NASDAQ indices, each spanning a decade of daily data, are utilized. The models predict daily stock returns based on historical features such as past returns,Relative Strength Index (RSI), trading volume, and volatility. Portfolios are dynamically adjusted by longing stocks with positive predicted returns and shorting those with negative predictions, with equal asset weights. Performance is evaluated over a two-year testing period, focusing on return, Sharpe ratio, and maximum drawdown metrics. The results demonstrate the efficacy of deep learning models in enhancing long-short stock portfolio performance. ...

October 31, 2024 · 2 min · Research Team