false

Few-Shot Learning Patterns in Financial Time-Series for Trend-Following Strategies

Few-Shot Learning Patterns in Financial Time-Series for Trend-Following Strategies ArXiv ID: 2310.10500 “View on arXiv” Authors: Unknown Abstract Forecasting models for systematic trading strategies do not adapt quickly when financial market conditions rapidly change, as was seen in the advent of the COVID-19 pandemic in 2020, causing many forecasting models to take loss-making positions. To deal with such situations, we propose a novel time-series trend-following forecaster that can quickly adapt to new market conditions, referred to as regimes. We leverage recent developments from the deep learning community and use few-shot learning. We propose the Cross Attentive Time-Series Trend Network – X-Trend – which takes positions attending over a context set of financial time-series regimes. X-Trend transfers trends from similar patterns in the context set to make forecasts, then subsequently takes positions for a new distinct target regime. By quickly adapting to new financial regimes, X-Trend increases Sharpe ratio by 18.9% over a neural forecaster and 10-fold over a conventional Time-series Momentum strategy during the turbulent market period from 2018 to 2023. Our strategy recovers twice as quickly from the COVID-19 drawdown compared to the neural-forecaster. X-Trend can also take zero-shot positions on novel unseen financial assets obtaining a 5-fold Sharpe ratio increase versus a neural time-series trend forecaster over the same period. Furthermore, the cross-attention mechanism allows us to interpret the relationship between forecasts and patterns in the context set. ...

October 16, 2023 · 2 min · Research Team

Startup success prediction and VC portfolio simulation using CrunchBase data

Startup success prediction and VC portfolio simulation using CrunchBase data ArXiv ID: 2309.15552 “View on arXiv” Authors: Unknown Abstract Predicting startup success presents a formidable challenge due to the inherently volatile landscape of the entrepreneurial ecosystem. The advent of extensive databases like Crunchbase jointly with available open data enables the application of machine learning and artificial intelligence for more accurate predictive analytics. This paper focuses on startups at their Series B and Series C investment stages, aiming to predict key success milestones such as achieving an Initial Public Offering (IPO), attaining unicorn status, or executing a successful Merger and Acquisition (M&A). We introduce novel deep learning model for predicting startup success, integrating a variety of factors such as funding metrics, founder features, industry category. A distinctive feature of our research is the use of a comprehensive backtesting algorithm designed to simulate the venture capital investment process. This simulation allows for a robust evaluation of our model’s performance against historical data, providing actionable insights into its practical utility in real-world investment contexts. Evaluating our model on Crunchbase’s, we achieved a 14 times capital growth and successfully identified on B round high-potential startups including Revolut, DigitalOcean, Klarna, Github and others. Our empirical findings illuminate the importance of incorporating diverse feature sets in enhancing the model’s predictive accuracy. In summary, our work demonstrates the considerable promise of deep learning models and alternative unstructured data in predicting startup success and sets the stage for future advancements in this research area. ...

September 27, 2023 · 2 min · Research Team

A Comprehensive Review on Financial Explainable AI

A Comprehensive Review on Financial Explainable AI ArXiv ID: 2309.11960 “View on arXiv” Authors: Unknown Abstract The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important. ...

September 21, 2023 · 2 min · Research Team

PAMS: Platform for Artificial Market Simulations

PAMS: Platform for Artificial Market Simulations ArXiv ID: 2309.10729 “View on arXiv” Authors: Unknown Abstract This paper presents a new artificial market simulation platform, PAMS: Platform for Artificial Market Simulations. PAMS is developed as a Python-based simulator that is easily integrated with deep learning and enabling various simulation that requires easy users’ modification. In this paper, we demonstrate PAMS effectiveness through a study using agents predicting future prices by deep learning. ...

September 19, 2023 · 2 min · Research Team

Deep multi-step mixed algorithm for high dimensional non-linear PDEs and associated BSDEs

Deep multi-step mixed algorithm for high dimensional non-linear PDEs and associated BSDEs ArXiv ID: 2308.14487 “View on arXiv” Authors: Unknown Abstract We propose a new multistep deep learning-based algorithm for the resolution of moderate to high dimensional nonlinear backward stochastic differential equations (BSDEs) and their corresponding parabolic partial differential equations (PDE). Our algorithm relies on the iterated time discretisation of the BSDE and approximates its solution and gradient using deep neural networks and automatic differentiation at each time step. The approximations are obtained by sequential minimisation of local quadratic loss functions at each time step through stochastic gradient descent. We provide an analysis of approximation error in the case of a network architecture with weight constraints requiring only low regularity conditions on the generator of the BSDE. The algorithm increases accuracy from its single step parent model and has reduced complexity when compared to similar models in the literature. ...

August 28, 2023 · 2 min · Research Team

DeRisk: An Effective Deep Learning Framework for Credit Risk Prediction over Real-World Financial Data

DeRisk: An Effective Deep Learning Framework for Credit Risk Prediction over Real-World Financial Data ArXiv ID: 2308.03704 “View on arXiv” Authors: Unknown Abstract Despite the tremendous advances achieved over the past years by deep learning techniques, the latest risk prediction models for industrial applications still rely on highly handtuned stage-wised statistical learning tools, such as gradient boosting and random forest methods. Different from images or languages, real-world financial data are high-dimensional, sparse, noisy and extremely imbalanced, which makes deep neural network models particularly challenging to train and fragile in practice. In this work, we propose DeRisk, an effective deep learning risk prediction framework for credit risk prediction on real-world financial data. DeRisk is the first deep risk prediction model that outperforms statistical learning approaches deployed in our company’s production system. We also perform extensive ablation studies on our method to present the most critical factors for the empirical success of DeRisk. ...

August 7, 2023 · 2 min · Research Team

Multi-Factor Inception: What to Do with All of These Features?

Multi-Factor Inception: What to Do with All of These Features? ArXiv ID: 2307.13832 “View on arXiv” Authors: Unknown Abstract Cryptocurrency trading represents a nascent field of research, with growing adoption in industry. Aided by its decentralised nature, many metrics describing cryptocurrencies are accessible with a simple Google search and update frequently, usually at least on a daily basis. This presents a promising opportunity for data-driven systematic trading research, where limited historical data can be augmented with additional features, such as hashrate or Google Trends. However, one question naturally arises: how to effectively select and process these features? In this paper, we introduce Multi-Factor Inception Networks (MFIN), an end-to-end framework for systematic trading with multiple assets and factors. MFINs extend Deep Inception Networks (DIN) to operate in a multi-factor context. Similar to DINs, MFIN models automatically learn features from returns data and output position sizes that optimise portfolio Sharpe ratio. Compared to a range of rule-based momentum and reversion strategies, MFINs learn an uncorrelated, higher-Sharpe strategy that is not captured by traditional, hand-crafted factors. In particular, MFIN models continue to achieve consistent returns over the most recent years (2022-2023), where traditional strategies and the wider cryptocurrency market have underperformed. ...

July 25, 2023 · 2 min · Research Team

Leveraging Deep Learning and Online Source Sentiment for Financial Portfolio Management

Leveraging Deep Learning and Online Source Sentiment for Financial Portfolio Management ArXiv ID: 2309.16679 “View on arXiv” Authors: Unknown Abstract Financial portfolio management describes the task of distributing funds and conducting trading operations on a set of financial assets, such as stocks, index funds, foreign exchange or cryptocurrencies, aiming to maximize the profit while minimizing the loss incurred by said operations. Deep Learning (DL) methods have been consistently excelling at various tasks and automated financial trading is one of the most complex one of those. This paper aims to provide insight into various DL methods for financial trading, under both the supervised and reinforcement learning schemes. At the same time, taking into consideration sentiment information regarding the traded assets, we discuss and demonstrate their usefulness through corresponding research studies. Finally, we discuss commonly found problems in training such financial agents and equip the reader with the necessary knowledge to avoid these problems and apply the discussed methods in practice. ...

July 23, 2023 · 2 min · Research Team

Stochastic Delay Differential Games: Financial Modeling and Machine Learning Algorithms

Stochastic Delay Differential Games: Financial Modeling and Machine Learning Algorithms ArXiv ID: 2307.06450 “View on arXiv” Authors: Unknown Abstract In this paper, we propose a numerical methodology for finding the closed-loop Nash equilibrium of stochastic delay differential games through deep learning. These games are prevalent in finance and economics where multi-agent interaction and delayed effects are often desired features in a model, but are introduced at the expense of increased dimensionality of the problem. This increased dimensionality is especially significant as that arising from the number of players is coupled with the potential infinite dimensionality caused by the delay. Our approach involves parameterizing the controls of each player using distinct recurrent neural networks. These recurrent neural network-based controls are then trained using a modified version of Brown’s fictitious play, incorporating deep learning techniques. To evaluate the effectiveness of our methodology, we test it on finance-related problems with known solutions. Furthermore, we also develop new problems and derive their analytical Nash equilibrium solutions, which serve as additional benchmarks for assessing the performance of our proposed deep learning approach. ...

July 12, 2023 · 2 min · Research Team

Sports Betting: an application of neural networks and modern portfolio theory to the English Premier League

Sports Betting: an application of neural networks and modern portfolio theory to the English Premier League ArXiv ID: 2307.13807 “View on arXiv” Authors: Unknown Abstract This paper presents a novel approach for optimizing betting strategies in sports gambling by integrating Von Neumann-Morgenstern Expected Utility Theory, deep learning techniques, and advanced formulations of the Kelly Criterion. By combining neural network models with portfolio optimization, our method achieved remarkable profits of 135.8% relative to the initial wealth during the latter half of the 20/21 season of the English Premier League. We explore complete and restricted strategies, evaluating their performance, risk management, and diversification. A deep neural network model is developed to forecast match outcomes, addressing challenges such as limited variables. Our research provides valuable insights and practical applications in the field of sports betting and predictive modeling. ...

July 11, 2023 · 2 min · Research Team