false

QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE

QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE ArXiv ID: 2409.05144 “View on arXiv” Authors: Unknown Abstract Alpha factor mining aims to discover investment signals from the historical financial market data, which can be used to predict asset returns and gain excess profits. Powerful deep learning methods for alpha factor mining lack interpretability, making them unacceptable in the risk-sensitive real markets. Formulaic alpha factors are preferred for their interpretability, while the search space is complex and powerful explorative methods are urged. Recently, a promising framework is proposed for generating formulaic alpha factors using deep reinforcement learning, and quickly gained research focuses from both academia and industries. This paper first argues that the originally employed policy training method, i.e., Proximal Policy Optimization (PPO), faces several important issues in the context of alpha factors mining. Herein, a novel reinforcement learning algorithm based on the well-known REINFORCE algorithm is proposed. REINFORCE employs Monte Carlo sampling to estimate the policy gradient-yielding unbiased but high variance estimates. The minimal environmental variability inherent in the underlying state transition function, which adheres to the Dirac distribution, can help alleviate this high variance issue, making REINFORCE algorithm more appropriate than PPO. A new dedicated baseline is designed to theoretically reduce the commonly suffered high variance of REINFORCE. Moreover, the information ratio is introduced as a reward shaping mechanism to encourage the generation of steady alpha factors that can better adapt to changes in market volatility. Evaluations on real assets data indicate the proposed algorithm boosts correlation with returns by 3.83%, and a stronger ability to obtain excess returns compared to the latest alpha factors mining methods, which meets the theoretical results well. ...

September 8, 2024 · 2 min · Research Team

A Deep Reinforcement Learning Framework For Financial Portfolio Management

A Deep Reinforcement Learning Framework For Financial Portfolio Management ArXiv ID: 2409.08426 “View on arXiv” Authors: Unknown Abstract In this research paper, we investigate into a paper named “A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem” [“arXiv:1706.10059”]. It is a portfolio management problem which is solved by deep learning techniques. The original paper proposes a financial-model-free reinforcement learning framework, which consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. Three different instants are used to realize this framework, namely a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). The performance is then examined by comparing to a number of recently reviewed or published portfolio-selection strategies. We have successfully replicated their implementations and evaluations. Besides, we further apply this framework in the stock market, instead of the cryptocurrency market that the original paper uses. The experiment in the cryptocurrency market is consistent with the original paper, which achieve superior returns. But it doesn’t perform as well when applied in the stock market. ...

September 3, 2024 · 2 min · Research Team

Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization

Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization ArXiv ID: 2402.16609 “View on arXiv” Authors: Unknown Abstract As a model-free algorithm, deep reinforcement learning (DRL) agent learns and makes decisions by interacting with the environment in an unsupervised way. In recent years, DRL algorithms have been widely applied by scholars for portfolio optimization in consecutive trading periods, since the DRL agent can dynamically adapt to market changes and does not rely on the specification of the joint dynamics across the assets. However, typical DRL agents for portfolio optimization cannot learn a policy that is aware of the dynamic correlation between portfolio asset returns. Since the dynamic correlations among portfolio assets are crucial in optimizing the portfolio, the lack of such knowledge makes it difficult for the DRL agent to maximize the return per unit of risk, especially when the target market permits short selling (i.e., the US stock market). In this research, we propose a hybrid portfolio optimization model combining the DRL agent and the Black-Litterman (BL) model to enable the DRL agent to learn the dynamic correlation between the portfolio asset returns and implement an efficacious long/short strategy based on the correlation. Essentially, the DRL agent is trained to learn the policy to apply the BL model to determine the target portfolio weights. To test our DRL agent, we construct the portfolio based on all the Dow Jones Industrial Average constitute stocks. Empirical results of the experiments conducted on real-world United States stock market data demonstrate that our DRL agent significantly outperforms various comparison portfolio choice strategies and alternative DRL frameworks by at least 42% in terms of accumulated return. In terms of the return per unit of risk, our DRL agent significantly outperforms various comparative portfolio choice strategies and alternative strategies based on other machine learning frameworks. ...

February 23, 2024 · 3 min · Research Team

Deep Hedging with Market Impact

Deep Hedging with Market Impact ArXiv ID: 2402.13326 “View on arXiv” Authors: Unknown Abstract Dynamic hedging is the practice of periodically transacting financial instruments to offset the risk caused by an investment or a liability. Dynamic hedging optimization can be framed as a sequential decision problem; thus, Reinforcement Learning (RL) models were recently proposed to tackle this task. However, existing RL works for hedging do not consider market impact caused by the finite liquidity of traded instruments. Integrating such feature can be crucial to achieve optimal performance when hedging options on stocks with limited liquidity. In this paper, we propose a novel general market impact dynamic hedging model based on Deep Reinforcement Learning (DRL) that considers several realistic features such as convex market impacts, and impact persistence through time. The optimal policy obtained from the DRL model is analysed using several option hedging simulations and compared to commonly used procedures such as delta hedging. Results show our DRL model behaves better in contexts of low liquidity by, among others: 1) learning the extent to which portfolio rebalancing actions should be dampened or delayed to avoid high costs, 2) factoring in the impact of features not considered by conventional approaches, such as previous hedging errors through the portfolio value, and the underlying asset’s drift (i.e. the magnitude of its expected return). ...

February 20, 2024 · 2 min · Research Team

Learning the Market: Sentiment-Based Ensemble Trading Agents

Learning the Market: Sentiment-Based Ensemble Trading Agents ArXiv ID: 2402.01441 “View on arXiv” Authors: Unknown Abstract We propose and study the integration of sentiment analysis and deep reinforcement learning ensemble algorithms for stock trading by evaluating strategies capable of dynamically altering their active agent given the concurrent market environment. In particular, we design a simple-yet-effective method for extracting financial sentiment and combine this with improvements on existing trading agents, resulting in a strategy that effectively considers both qualitative market factors and quantitative stock data. We show that our approach results in a strategy that is profitable, robust, and risk-minimal - outperforming the traditional ensemble strategy as well as single agent algorithms and market metrics. Our findings suggest that the conventional practice of switching and reevaluating agents in ensemble every fixed-number of months is sub-optimal, and that a dynamic sentiment-based framework greatly unlocks additional performance. Furthermore, as we have designed our algorithm with simplicity and efficiency in mind, we hypothesize that the transition of our method from historical evaluation towards real-time trading with live data to be relatively simple. ...

February 2, 2024 · 2 min · Research Team

CNN-DRL with Shuffled Features in Finance

CNN-DRL with Shuffled Features in Finance ArXiv ID: 2402.03338 “View on arXiv” Authors: Unknown Abstract In prior methods, it was observed that the application of Convolutional Neural Networks agent in Deep Reinforcement Learning to financial data resulted in an enhanced reward. In this study, a specific permutation was applied to the feature vector, thereby generating a CNN matrix that strategically positions more pertinent features in close proximity. Our comprehensive experimental evaluations unequivocally demonstrate a substantial enhancement in reward attainment. ...

January 16, 2024 · 1 min · Research Team

CNN-DRL for Scalable Actions in Finance

CNN-DRL for Scalable Actions in Finance ArXiv ID: 2401.06179 “View on arXiv” Authors: Unknown Abstract The published MLP-based DRL in finance has difficulties in learning the dynamics of the environment when the action scale increases. If the buying and selling increase to one thousand shares, the MLP agent will not be able to effectively adapt to the environment. To address this, we designed a CNN agent that concatenates the data from the last ninety days of the daily feature vector to create the CNN input matrix. Our extensive experiments demonstrate that the MLP-based agent experiences a loss corresponding to the initial environment setup, while our designed CNN remains stable, effectively learns the environment, and leads to an increase in rewards. ...

January 10, 2024 · 2 min · Research Team

Deep Reinforcement Learning for Quantitative Trading

Deep Reinforcement Learning for Quantitative Trading ArXiv ID: 2312.15730 “View on arXiv” Authors: Unknown Abstract Artificial Intelligence (AI) and Machine Learning (ML) are transforming the domain of Quantitative Trading (QT) through the deployment of advanced algorithms capable of sifting through extensive financial datasets to pinpoint lucrative investment openings. AI-driven models, particularly those employing ML techniques such as deep learning and reinforcement learning, have shown great prowess in predicting market trends and executing trades at a speed and accuracy that far surpass human capabilities. Its capacity to automate critical tasks, such as discerning market conditions and executing trading strategies, has been pivotal. However, persistent challenges exist in current QT methods, especially in effectively handling noisy and high-frequency financial data. Striking a balance between exploration and exploitation poses another challenge for AI-driven trading agents. To surmount these hurdles, our proposed solution, QTNet, introduces an adaptive trading model that autonomously formulates QT strategies through an intelligent trading agent. Incorporating deep reinforcement learning (DRL) with imitative learning methodologies, we bolster the proficiency of our model. To tackle the challenges posed by volatile financial datasets, we conceptualize the QT mechanism within the framework of a Partially Observable Markov Decision Process (POMDP). Moreover, by embedding imitative learning, the model can capitalize on traditional trading tactics, nurturing a balanced synergy between discovery and utilization. For a more realistic simulation, our trading agent undergoes training using minute-frequency data sourced from the live financial market. Experimental findings underscore the model’s proficiency in extracting robust market features and its adaptability to diverse market conditions. ...

December 25, 2023 · 2 min · Research Team

An Ensemble Method of Deep Reinforcement Learning for Automated Cryptocurrency Trading

An Ensemble Method of Deep Reinforcement Learning for Automated Cryptocurrency Trading ArXiv ID: 2309.00626 “View on arXiv” Authors: Unknown Abstract We propose an ensemble method to improve the generalization performance of trading strategies trained by deep reinforcement learning algorithms in a highly stochastic environment of intraday cryptocurrency portfolio trading. We adopt a model selection method that evaluates on multiple validation periods, and propose a novel mixture distribution policy to effectively ensemble the selected models. We provide a distributional view of the out-of-sample performance on granular test periods to demonstrate the robustness of the strategies in evolving market conditions, and retrain the models periodically to address non-stationarity of financial data. Our proposed ensemble method improves the out-of-sample performance compared with the benchmarks of a deep reinforcement learning strategy and a passive investment strategy. ...

July 27, 2023 · 2 min · Research Team

Machine Learning-powered Pricing of the Multidimensional Passport Option

Machine Learning-powered Pricing of the Multidimensional Passport Option ArXiv ID: 2307.14887 “View on arXiv” Authors: Unknown Abstract Introduced in the late 90s, the passport option gives its holder the right to trade in a market and receive any positive gain in the resulting traded account at maturity. Pricing the option amounts to solving a stochastic control problem that for $d>1$ risky assets remains an open problem. Even in a correlated Black-Scholes (BS) market with $d=2$ risky assets, no optimal trading strategy has been derived in closed form. In this paper, we derive a discrete-time solution for multi-dimensional BS markets with uncorrelated assets. Moreover, inspired by the success of deep reinforcement learning in, e.g., board games, we propose two machine learning-powered approaches to pricing general options on a portfolio value in general markets. These approaches prove to be successful for pricing the passport option in one-dimensional and multi-dimensional uncorrelated BS markets. ...

July 27, 2023 · 2 min · Research Team