false

Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting

Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting ArXiv ID: 2504.02518 “View on arXiv” Authors: Unknown Abstract Probabilistic electricity price forecasting (PEPF) is vital for short-term electricity markets, yet the multivariate nature of day-ahead prices - spanning 24 consecutive hours - remains underexplored. At the same time, real-time decision-making requires methods that are both accurate and fast. We introduce an online algorithm for multivariate distributional regression models, allowing an efficient modelling of the conditional means, variances, and dependence structures of electricity prices. The approach combines multivariate distributional regression with online coordinate descent and LASSO-type regularization, enabling scalable estimation in high-dimensional covariate spaces. Additionally, we propose a regularized estimation path over increasingly complex dependence structures, allowing for early stopping and avoiding overfitting. In a case study of the German day-ahead market, our method outperforms a wide range of benchmarks, showing that modeling dependence improves both calibration and predictive accuracy. Furthermore, we analyse the trade-off between predictive accuracy and computational costs for batch and online estimation and provide an high-performing open-source Python implementation in the ondil package. ...

April 3, 2025 · 2 min · Research Team

Deep into The Domain Shift: Transfer Learning through Dependence Regularization

Deep into The Domain Shift: Transfer Learning through Dependence Regularization ArXiv ID: 2305.19499 “View on arXiv” Authors: Unknown Abstract Classical Domain Adaptation methods acquire transferability by regularizing the overall distributional discrepancies between features in the source domain (labeled) and features in the target domain (unlabeled). They often do not differentiate whether the domain differences come from the marginals or the dependence structures. In many business and financial applications, the labeling function usually has different sensitivities to the changes in the marginals versus changes in the dependence structures. Measuring the overall distributional differences will not be discriminative enough in acquiring transferability. Without the needed structural resolution, the learned transfer is less optimal. This paper proposes a new domain adaptation approach in which one can measure the differences in the internal dependence structure separately from those in the marginals. By optimizing the relative weights among them, the new regularization strategy greatly relaxes the rigidness of the existing approaches. It allows a learning machine to pay special attention to places where the differences matter the most. Experiments on three real-world datasets show that the improvements are quite notable and robust compared to various benchmark domain adaptation models. ...

May 31, 2023 · 2 min · Research Team