Axes that matter: PCA with a difference
Axes that matter: PCA with a difference ArXiv ID: 2503.06707 “View on arXiv” Authors: Unknown Abstract We extend the scope of differential machine learning and introduce a new breed of supervised principal component analysis to reduce dimensionality of Derivatives problems. Applications include the specification and calibration of pricing models, the identification of regression features in least-square Monte-Carlo, and the pre-processing of simulated datasets for (differential) machine learning. Keywords: differential machine learning, principal component analysis, derivatives pricing, least-square Monte-Carlo, dimensionality reduction ...