false

Can Artificial Intelligence Trade the Stock Market?

Can Artificial Intelligence Trade the Stock Market? ArXiv ID: 2506.04658 “View on arXiv” Authors: Jędrzej Maskiewicz, Paweł Sakowski Abstract The paper explores the use of Deep Reinforcement Learning (DRL) in stock market trading, focusing on two algorithms: Double Deep Q-Network (DDQN) and Proximal Policy Optimization (PPO) and compares them with Buy and Hold benchmark. It evaluates these algorithms across three currency pairs, the S&P 500 index and Bitcoin, on the daily data in the period of 2019-2023. The results demonstrate DRL’s effectiveness in trading and its ability to manage risk by strategically avoiding trades in unfavorable conditions, providing a substantial edge over classical approaches, based on supervised learning in terms of risk-adjusted returns. ...

June 5, 2025 · 2 min · Research Team

Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models

Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models ArXiv ID: 2504.16635 “View on arXiv” Authors: Fredy Pokou, Jules Sadefo Kamdem, François Benhmad Abstract In an environment of increasingly volatile financial markets, the accurate estimation of risk remains a major challenge. Traditional econometric models, such as GARCH and its variants, are based on assumptions that are often too rigid to adapt to the complexity of the current market dynamics. To overcome these limitations, we propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning. Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem. This architecture enables the dynamic adjustment of risk-level forecasts according to market conditions. Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates, as well as a reduction in the number of breaches and also in capital requirements, while respecting regulatory risk thresholds. The ability of the model to adjust risk levels in real time reinforces its relevance to modern and proactive risk management. ...

April 23, 2025 · 2 min · Research Team