false

TLOB: A Novel Transformer Model with Dual Attention for Price Trend Prediction with Limit Order Book Data

TLOB: A Novel Transformer Model with Dual Attention for Price Trend Prediction with Limit Order Book Data ArXiv ID: 2502.15757 “View on arXiv” Authors: Unknown Abstract Price Trend Prediction (PTP) based on Limit Order Book (LOB) data is a fundamental challenge in financial markets. Despite advances in deep learning, existing models fail to generalize across different market conditions and assets. Surprisingly, by adapting a simple MLP-based architecture to LOB, we show that we surpass SoTA performance; thus, challenging the necessity of complex architectures. Unlike past work that shows robustness issues, we propose TLOB, a transformer-based model that uses a dual attention mechanism to capture spatial and temporal dependencies in LOB data. This allows it to adaptively focus on the market microstructure, making it particularly effective for longer-horizon predictions and volatile market conditions. We also introduce a new labeling method that improves on previous ones, removing the horizon bias. We evaluate TLOB’s effectiveness across four horizons, using the established FI-2010 benchmark, a NASDAQ and a Bitcoin dataset. TLOB outperforms SoTA methods in every dataset and horizon. Additionally, we empirically show how stock price predictability has declined over time, -6.68 in F1-score, highlighting the growing market efficiency. Predictability must be considered in relation to transaction costs, so we experimented with defining trends using an average spread, reflecting the primary transaction cost. The resulting performance deterioration underscores the complexity of translating trend classification into profitable trading strategies. We argue that our work provides new insights into the evolving landscape of stock price trend prediction and sets a strong foundation for future advancements in financial AI. We release the code at https://github.com/LeonardoBerti00/TLOB. ...

February 12, 2025 · 2 min · Research Team

DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting

DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting ArXiv ID: 2405.00522 “View on arXiv” Authors: Unknown Abstract In the distributed systems landscape, Blockchain has catalyzed the rise of cryptocurrencies, merging enhanced security and decentralization with significant investment opportunities. Despite their potential, current research on cryptocurrency trend forecasting often falls short by simplistically merging sentiment data without fully considering the nuanced interplay between financial market dynamics and external sentiment influences. This paper presents a novel Dual Attention Mechanism (DAM) for forecasting cryptocurrency trends using multimodal time-series data. Our approach, which integrates critical cryptocurrency metrics with sentiment data from news and social media analyzed through CryptoBERT, addresses the inherent volatility and prediction challenges in cryptocurrency markets. By combining elements of distributed systems, natural language processing, and financial forecasting, our method outperforms conventional models like LSTM and Transformer by up to 20% in prediction accuracy. This advancement deepens the understanding of distributed systems and has practical implications in financial markets, benefiting stakeholders in cryptocurrency and blockchain technologies. Moreover, our enhanced forecasting approach can significantly support decentralized science (DeSci) by facilitating strategic planning and the efficient adoption of blockchain technologies, improving operational efficiency and financial risk management in the rapidly evolving digital asset domain, thus ensuring optimal resource allocation. ...

May 1, 2024 · 2 min · Research Team