false

Variational Quantum Eigensolver for Real-World Finance: Scalable Solutions for Dynamic Portfolio Optimization Problems

Variational Quantum Eigensolver for Real-World Finance: Scalable Solutions for Dynamic Portfolio Optimization Problems ArXiv ID: 2512.22001 “View on arXiv” Authors: Irene De León, Danel Arias, Manuel Martín-Cordero, María Esperanza Molina, Pablo Serrano, Senaida Hernández-Santana, Miguel Ángel Jiménez Herrera, Joana Fraxanet, Ginés Carrascal, Escolástico Sánchez, Inmaculada Posadillo, Álvaro Nodar Abstract We present a scalable, hardware-aware methodology for extending the Variational Quantum Eigensolver (VQE) to large, realistic Dynamic Portfolio Optimization (DPO) problems. Building on the scaling strategy from our previous work, where we tailored a VQE workflow to both the DPO formulation and the target QPU, we now put forward two significant advances. The first is the implementation of the Ising Sample-based Quantum Configuration Recovery (ISQR) routine, which improves solution quality in Quadratic Unconstrained Binary Optimization problems. The second is the use of the VQE Constrained method to decompose the optimization task, enabling us to handle DPO instances with more variables than the available qubits on current hardware. These advances, which are broadly applicable to other optimization problems, allow us to address a portfolio with a size relevant to the financial industry, consisting of up to 38 assets and covering the full Spanish stock index (IBEX 35). Our results, obtained on a real Quantum Processing Unit (IBM Fez), show that this tailored workflow achieves financial performance on par with classical methods while delivering a broader set of high-quality investment strategies, demonstrating a viable path towards obtaining practical advantage from quantum optimization in real financial applications. ...

December 26, 2025 · 2 min · Research Team

Dynamic Black-Litterman

Dynamic Black-Litterman ArXiv ID: 2404.18822 “View on arXiv” Authors: Unknown Abstract The Black-Litterman model is a framework for incorporating forward-looking expert views in a portfolio optimization problem. Existing work focuses almost exclusively on single-period problems with the forecast horizon matching that of the investor. We consider a generalization where the investor trades dynamically and views can be over horizons that differ from the investor. By exploiting the underlying graphical structure relating the asset prices and views, we derive the conditional distribution of asset returns when the price process is geometric Brownian motion, and show that it can be written in terms of a multi-dimensional Brownian bridge. The components of the Brownian bridge are dependent one-dimensional Brownian bridges with hitting times that are determined by the statistics of the price process and views. The new price process is an affine factor model with the conditional log-price process playing the role of a vector of factors. We derive an explicit expression for the optimal dynamic investment policy and analyze the hedging demand for changes in the new covariate. More generally, the paper shows that Bayesian graphical models are a natural framework for incorporating complex information structures in the Black-Litterman model. The connection between Brownian motion conditional on noisy observations of its terminal value and multi-dimensional Brownian bridge is novel and of independent interest. ...

April 29, 2024 · 2 min · Research Team