false

Market Making without Regret

Market Making without Regret ArXiv ID: 2411.13993 “View on arXiv” Authors: Unknown Abstract We consider a sequential decision-making setting where, at every round $t$, a market maker posts a bid price $B_t$ and an ask price $A_t$ to an incoming trader (the taker) with a private valuation for one unit of some asset. If the trader’s valuation is lower than the bid price, or higher than the ask price, then a trade (sell or buy) occurs. If a trade happens at round $t$, then letting $M_t$ be the market price (observed only at the end of round $t$), the maker’s utility is $M_t - B_t$ if the maker bought the asset, and $A_t - M_t$ if they sold it. We characterize the maker’s regret with respect to the best fixed choice of bid and ask pairs under a variety of assumptions (adversarial, i.i.d., and their variants) on the sequence of market prices and valuations. Our upper bound analysis unveils an intriguing connection relating market making to first-price auctions and dynamic pricing. Our main technical contribution is a lower bound for the i.i.d. case with Lipschitz distributions and independence between prices and valuations. The difficulty in the analysis stems from the unique structure of the reward and feedback functions, allowing an algorithm to acquire information by graduating the “cost of exploration” in an arbitrary way. ...

November 21, 2024 · 2 min · Research Team

Implementing Dynamic Pricing Across Multiple Pricing Groups in Real Estate

Implementing Dynamic Pricing Across Multiple Pricing Groups in Real Estate ArXiv ID: 2411.07732 “View on arXiv” Authors: Unknown Abstract This article presents a mathematical model of dynamic pricing for real estate (RE) that incorporates multiple pricing groups, thereby expanding the capabilities of existing models. The developed model solves the problem of maximizing aggregate cumulative revenue at the end of the sales period while meeting the revenue and sales goals. A method is proposed for distributing aggregate cumulative revenue goals across different RE pricing groups. The model is further modified to account for the time value of money and the real estate value increase as construction progresses. The algorithm for constructing a pricing policy for multiple pricing groups is described, and numerical simulations are performed to demonstrate how the algorithm operates. ...

November 12, 2024 · 2 min · Research Team

Dynamic Pricing in Securities Lending Market: Application in Revenue Optimization for an Agent Lender Portfolio

Dynamic Pricing in Securities Lending Market: Application in Revenue Optimization for an Agent Lender Portfolio ArXiv ID: 2407.13687 “View on arXiv” Authors: Unknown Abstract Securities lending is an important part of the financial market structure, where agent lenders help long term institutional investors to lend out their securities to short sellers in exchange for a lending fee. Agent lenders within the market seek to optimize revenue by lending out securities at the highest rate possible. Typically, this rate is set by hard-coded business rules or standard supervised machine learning models. These approaches are often difficult to scale and are not adaptive to changing market conditions. Unlike a traditional stock exchange with a centralized limit order book, the securities lending market is organized similarly to an e-commerce marketplace, where agent lenders and borrowers can transact at any agreed price in a bilateral fashion. This similarity suggests that the use of typical methods for addressing dynamic pricing problems in e-commerce could be effective in the securities lending market. We show that existing contextual bandit frameworks can be successfully utilized in the securities lending market. Using offline evaluation on real historical data, we show that the contextual bandit approach can consistently outperform typical approaches by at least 15% in terms of total revenue generated. ...

July 18, 2024 · 2 min · Research Team

Insurance pricing on price comparison websites via reinforcement learning

Insurance pricing on price comparison websites via reinforcement learning ArXiv ID: 2308.06935 “View on arXiv” Authors: Unknown Abstract The emergence of price comparison websites (PCWs) has presented insurers with unique challenges in formulating effective pricing strategies. Operating on PCWs requires insurers to strike a delicate balance between competitive premiums and profitability, amidst obstacles such as low historical conversion rates, limited visibility of competitors’ actions, and a dynamic market environment. In addition to this, the capital intensive nature of the business means pricing below the risk levels of customers can result in solvency issues for the insurer. To address these challenges, this paper introduces reinforcement learning (RL) framework that learns the optimal pricing policy by integrating model-based and model-free methods. The model-based component is used to train agents in an offline setting, avoiding cold-start issues, while model-free algorithms are then employed in a contextual bandit (CB) manner to dynamically update the pricing policy to maximise the expected revenue. This facilitates quick adaptation to evolving market dynamics and enhances algorithm efficiency and decision interpretability. The paper also highlights the importance of evaluating pricing policies using an offline dataset in a consistent fashion and demonstrates the superiority of the proposed methodology over existing off-the-shelf RL/CB approaches. We validate our methodology using synthetic data, generated to reflect private commercially available data within real-world insurers, and compare against 6 other benchmark approaches. Our hybrid agent outperforms these benchmarks in terms of sample efficiency and cumulative reward with the exception of an agent that has access to perfect market information which would not be available in a real-world set-up. ...

August 14, 2023 · 2 min · Research Team