false

Neural Operators Can Play Dynamic Stackelberg Games

Neural Operators Can Play Dynamic Stackelberg Games ArXiv ID: 2411.09644 “View on arXiv” Authors: Unknown Abstract Dynamic Stackelberg games are a broad class of two-player games in which the leader acts first, and the follower chooses a response strategy to the leader’s strategy. Unfortunately, only stylized Stackelberg games are explicitly solvable since the follower’s best-response operator (as a function of the control of the leader) is typically analytically intractable. This paper addresses this issue by showing that the \textit{“follower’s best-response operator”} can be approximately implemented by an \textit{“attention-based neural operator”}, uniformly on compact subsets of adapted open-loop controls for the leader. We further show that the value of the Stackelberg game where the follower uses the approximate best-response operator approximates the value of the original Stackelberg game. Our main result is obtained using our universal approximation theorem for attention-based neural operators between spaces of square-integrable adapted stochastic processes, as well as stability results for a general class of Stackelberg games. ...

November 14, 2024 · 2 min · Research Team