false

RAG-IT: Retrieval-Augmented Instruction Tuning for Automated Financial Analysis -- A Case Study for the Semiconductor Sector

RAG-IT: Retrieval-Augmented Instruction Tuning for Automated Financial Analysis – A Case Study for the Semiconductor Sector ArXiv ID: 2412.08179 “View on arXiv” Authors: Unknown Abstract Financial analysis relies heavily on the interpretation of earnings reports to assess company performance and guide decision-making. Traditional methods for generating such analyzes require significant financial expertise and are often time-consuming. With the rapid advancement of Large Language Models (LLMs), domain-specific adaptations have emerged for financial tasks such as sentiment analysis and entity recognition. This paper introduces RAG-IT (Retrieval-Augmented Instruction Tuning), a novel framework designed to automate the generation of earnings report analysis through an LLM fine-tuned specifically for the financial domain. Our approach integrates retrieval augmentation with instruction-based fine-tuning to enhance factual accuracy, contextual relevance, and domain adaptability. We construct a sector-specific financial instruction dataset derived from semiconductor industry documents to guide the LLM adaptation to specialized financial reasoning. Using NVIDIA, AMD, and Broadcom as representative companies, our case study demonstrates that RAG-IT substantially improves a general-purpose open-source LLM and achieves performance comparable to commercial systems like GPT-3.5 on financial report generation tasks. This research highlights the potential of retrieval-augmented instruction tuning to streamline and elevate financial analysis automation, advancing the broader field of intelligent financial reporting. ...

December 11, 2024 · 2 min · Research Team

Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach

Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach ArXiv ID: 2408.06634 “View on arXiv” Authors: Unknown Abstract Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates ‘base factors’, such as financial metric growth and earnings transcripts, with ’external factors’, including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a ‘Hold’ option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools. ...

August 13, 2024 · 2 min · Research Team