false

Modeling Regime Structure and Informational Drivers of Stock Market Volatility via the Financial Chaos Index

Modeling Regime Structure and Informational Drivers of Stock Market Volatility via the Financial Chaos Index ArXiv ID: 2504.18958 “View on arXiv” Authors: Masoud Ataei Abstract This paper investigates the structural dynamics of stock market volatility through the Financial Chaos Index, a tensor- and eigenvalue-based measure designed to capture realized volatility via mutual fluctuations among asset prices. Motivated by empirical evidence of regime-dependent volatility behavior and perceptual time dilation during financial crises, we develop a regime-switching framework based on the Modified Lognormal Power-Law distribution. Analysis of the FCIX from January 1990 to December 2023 identifies three distinct market regimes, low-chaos, intermediate-chaos, and high-chaos, each characterized by differing levels of systemic stress, statistical dispersion and persistence characteristics. Building upon the segmented regime structure, we further examine the informational forces that shape forward-looking market expectations. Using sentiment-based predictors derived from the Equity Market Volatility tracker, we employ an elastic net regression model to forecast implied volatility, as proxied by the VIX index. Our findings indicate that shifts in macroeconomic, financial, policy, and geopolitical uncertainty exhibit strong predictive power for volatility dynamics across regimes. Together, these results offer a unified empirical perspective on how systemic uncertainty governs both the realized evolution of financial markets and the anticipatory behavior embedded in implied volatility measures. ...

April 26, 2025 · 2 min · Research Team

New approaches of the DCC-GARCH residual: Application to foreign exchange rates

New approaches of the DCC-GARCH residual: Application to foreign exchange rates ArXiv ID: 2411.08246 “View on arXiv” Authors: Unknown Abstract Two formulations are proposed to filter out correlations in the residuals of the multivariate GARCH model. The first approach is to estimate the correlation matrix as a parameter and transform any joint distribution to have an arbitrary correlation matrix. The second approach transforms time series data into an uncorrelated residual based on the eigenvalue decomposition of a correlation matrix. The empirical performance of these methods is examined through a prediction task for foreign exchange rates and compared with other methodologies in terms of the out-of-sample likelihood. By using these approaches, the DCC-GARCH residual can be almost independent. ...

November 12, 2024 · 2 min · Research Team

Inferring financial stock returns correlation from complex network analysis

Inferring financial stock returns correlation from complex network analysis ArXiv ID: 2407.20380 “View on arXiv” Authors: Unknown Abstract Financial stock returns correlations have been studied in the prism of random matrix theory, to distinguish the signal from the “noise”. Eigenvalues of the matrix that are above the rescaled Marchenko Pastur distribution can be interpreted as collective modes behavior while the modes under are usually considered as noise. In this analysis we use complex network analysis to simulate the “noise” and the “market” component of the return correlations, by introducing some meaningful correlations in simulated geometric Brownian motion for the stocks. We find that the returns correlation matrix is dominated by stocks with high eigenvector centrality and clustering found in the network. We then use simulated “market” random walks to build an optimal portfolio and find that the overall return performs better than using the historical mean-variance data, up to 50% on short time scale. ...

July 29, 2024 · 2 min · Research Team