false

Painting the market: generative diffusion models for financial limit order book simulation and forecasting

Painting the market: generative diffusion models for financial limit order book simulation and forecasting ArXiv ID: 2509.05107 “View on arXiv” Authors: Alfred Backhouse, Kang Li, Jakob Foerster, Anisoara Calinescu, Stefan Zohren Abstract Simulating limit order books (LOBs) has important applications across forecasting and backtesting for financial market data. However, deep generative models struggle in this context due to the high noise and complexity of the data. Previous work uses autoregressive models, although these experience error accumulation over longer-time sequences. We introduce a novel approach, converting LOB data into a structured image format, and applying diffusion models with inpainting to generate future LOB states. This method leverages spatio-temporal inductive biases in the order book and enables parallel generation of long sequences overcoming issues with error accumulation. We also publicly contribute to LOB-Bench, the industry benchmark for LOB generative models, to allow fair comparison between models using Level-2 and Level-3 order book data (with or without message level data respectively). We show that our model achieves state-of-the-art performance on LOB-Bench, despite using lower fidelity data as input. We also show that our method prioritises coherent global structures over local, high-fidelity details, providing significant improvements over existing methods on certain metrics. Overall, our method lays a strong foundation for future research into generative diffusion approaches to LOB modelling. ...

September 5, 2025 · 2 min · Research Team

Reinforcement Learning in Non-Markov Market-Making

Reinforcement Learning in Non-Markov Market-Making ArXiv ID: 2410.14504 “View on arXiv” Authors: Unknown Abstract We develop a deep reinforcement learning (RL) framework for an optimal market-making (MM) trading problem, specifically focusing on price processes with semi-Markov and Hawkes Jump-Diffusion dynamics. We begin by discussing the basics of RL and the deep RL framework used, where we deployed the state-of-the-art Soft Actor-Critic (SAC) algorithm for the deep learning part. The SAC algorithm is an off-policy entropy maximization algorithm more suitable for tackling complex, high-dimensional problems with continuous state and action spaces like in optimal market-making (MM). We introduce the optimal MM problem considered, where we detail all the deterministic and stochastic processes that go into setting up an environment for simulating this strategy. Here we also give an in-depth overview of the jump-diffusion pricing dynamics used, our method for dealing with adverse selection within the limit order book, and we highlight the working parts of our optimization problem. Next, we discuss training and testing results, where we give visuals of how important deterministic and stochastic processes such as the bid/ask, trade executions, inventory, and the reward function evolved. We include a discussion on the limitations of these results, which are important points to note for most diffusion models in this setting. ...

October 18, 2024 · 2 min · Research Team