false

Deep Learning Models Meet Financial Data Modalities

Deep Learning Models Meet Financial Data Modalities ArXiv ID: 2504.13521 “View on arXiv” Authors: Unknown Abstract Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications. ...

April 18, 2025 · 2 min · Research Team

Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning

Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning ArXiv ID: 2412.01062 “View on arXiv” Authors: Unknown Abstract High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement. ...

December 2, 2024 · 2 min · Research Team

Optimal Execution with Reinforcement Learning

Optimal Execution with Reinforcement Learning ArXiv ID: 2411.06389 “View on arXiv” Authors: Unknown Abstract This study investigates the development of an optimal execution strategy through reinforcement learning, aiming to determine the most effective approach for traders to buy and sell inventory within a finite time horizon. Our proposed model leverages input features derived from the current state of the limit order book and operates at a high frequency to maximize control. To simulate this environment and overcome the limitations associated with relying on historical data, we utilize the multi-agent market simulator ABIDES, which provides a diverse range of depth levels within the limit order book. We present a custom MDP formulation followed by the results of our methodology and benchmark the performance against standard execution strategies. Results show that the reinforcement learning agent outperforms standard strategies and offers a practical foundation for real-world trading applications. ...

November 10, 2024 · 2 min · Research Team

Adaptive Optimal Market Making Strategies with Inventory Liquidation Cos

Adaptive Optimal Market Making Strategies with Inventory Liquidation Cos ArXiv ID: 2405.11444 “View on arXiv” Authors: Unknown Abstract A novel high-frequency market-making approach in discrete time is proposed that admits closed-form solutions. By taking advantage of demand functions that are linear in the quoted bid and ask spreads with random coefficients, we model the variability of the partial filling of limit orders posted in a limit order book (LOB). As a result, we uncover new patterns as to how the demand’s randomness affects the optimal placement strategy. We also allow the price process to follow general dynamics without any Brownian or martingale assumption as is commonly adopted in the literature. The most important feature of our optimal placement strategy is that it can react or adapt to the behavior of market orders online. Using LOB data, we train our model and reproduce the anticipated final profit and loss of the optimal strategy on a given testing date using the actual flow of orders in the LOB. Our adaptive optimal strategies outperform the non-adaptive strategy and those that quote limit orders at a fixed distance from the midprice. ...

May 19, 2024 · 2 min · Research Team