false

A Practical Machine Learning Approach for Dynamic Stock Recommendation

A Practical Machine Learning Approach for Dynamic Stock Recommendation ArXiv ID: 2511.12129 “View on arXiv” Authors: Hongyang Yang, Xiao-Yang Liu, Qingwei Wu Abstract Stock recommendation is vital to investment companies and investors. However, no single stock selection strategy will always win while analysts may not have enough time to check all S&P 500 stocks (the Standard & Poor’s 500). In this paper, we propose a practical scheme that recommends stocks from S&P 500 using machine learning. Our basic idea is to buy and hold the top 20% stocks dynamically. First, we select representative stock indicators with good explanatory power. Secondly, we take five frequently used machine learning methods, including linear regression, ridge regression, stepwise regression, random forest and generalized boosted regression, to model stock indicators and quarterly log-return in a rolling window. Thirdly, we choose the model with the lowest Mean Square Error in each period to rank stocks. Finally, we test the selected stocks by conducting portfolio allocation methods such as equally weighted, mean-variance, and minimum-variance. Our empirical results show that the proposed scheme outperforms the long-only strategy on the S&P 500 index in terms of Sharpe ratio and cumulative returns. This work is fully open-sourced at \href{“https://github.com/AI4Finance-Foundation/Dynamic-Stock-Recommendation-Machine_Learning-Published-Paper-IEEE"}{"GitHub"}. ...

November 15, 2025 · 2 min · Research Team

ChatGPT in Systematic Investing -- Enhancing Risk-Adjusted Returns with LLMs

ChatGPT in Systematic Investing – Enhancing Risk-Adjusted Returns with LLMs ArXiv ID: 2510.26228 “View on arXiv” Authors: Nikolas Anic, Andrea Barbon, Ralf Seiz, Carlo Zarattini Abstract This paper investigates whether large language models (LLMs) can improve cross-sectional momentum strategies by extracting predictive signals from firm-specific news. We combine daily U.S. equity returns for S&P 500 constituents with high-frequency news data and use prompt-engineered queries to ChatGPT that inform the model when a stock is about to enter a momentum portfolio. The LLM evaluates whether recent news supports a continuation of past returns, producing scores that condition both stock selection and portfolio weights. An LLM-enhanced momentum strategy outperforms a standard long-only momentum benchmark, delivering higher Sharpe and Sortino ratios both in-sample and in a truly out-of-sample period after the model’s pre-training cut-off. These gains are robust to transaction costs, prompt design, and portfolio constraints, and are strongest for concentrated, high-conviction portfolios. The results suggest that LLMs can serve as effective real-time interpreters of financial news, adding incremental value to established factor-based investment strategies. ...

October 30, 2025 · 2 min · Research Team

ESG Signaling on Wall Street in the AI Era

ESG Signaling on Wall Street in the AI Era ArXiv ID: 2510.15956 “View on arXiv” Authors: Qionghua Chu Abstract I identify a new signaling channel in ESG research by empirically examining whether environmental, social, and governance (ESG) investing remains valuable as large institutional investors increasingly shift toward artificial intelligence (AI). Using winsorized ESG scores of S&P 500 firms from Yahoo Finance and controlling for market value of equity, I conduct cross-sectional regressions to test the signaling mechanism. I demonstrate that Environmental, Social, Governance, and composite ESG scores strongly and positively signal higher debt-to-total-capital ratio, both individually and in various combinations. My findings contribute to the growing literature on ESG investing, offering economically meaningful signaling channel with implications for long-term portfolio management amid the rise of AI. ...

October 11, 2025 · 2 min · Research Team

Mechanisms of information communication and market price movements. The case of SP 500 market

Mechanisms of information communication and market price movements. The case of SP 500 market ArXiv ID: 2505.09625 “View on arXiv” Authors: Inga Ivanova, Grzegorz Rzadkowski Abstract In this paper we analyze how market prices change in response to information processing among the market participants and how non-linear information dynamics drive market price movement. We analyze historical data of the SP 500 market for the period 1950 -2025 using the logistic Continuous Wavelet Transformation method. This approach allows us to identify various patterns in market dynamics. These patterns are conceptualized using a new theory of reflexive communication of information in a market consisting of heterogeneous agents who assign meaning to information from different perspectives. This allows us to describe market dynamics and make forecasts of its development using the most general mechanisms of information circulation within the content-free approach. ...

April 28, 2025 · 2 min · Research Team

Phase Transitions in Financial Markets Using the Ising Model: A Statistical Mechanics Perspective

Phase Transitions in Financial Markets Using the Ising Model: A Statistical Mechanics Perspective ArXiv ID: 2504.19050 “View on arXiv” Authors: Bruno Giorgio Abstract This dissertation investigates the ability of the Ising model to replicate statistical characteristics, or stylized facts, commonly observed in financial assets. The study specifically examines in the S&P500 index the following features: volatility clustering, negative skewness, heavy tails, the absence of autocorrelation in returns, and the presence of autocorrelation in absolute returns. A significant portion of the dissertation is dedicated to Ising model-based simulations. Due to the lack of an analytical or deterministic solution, the Monte Carlo method was employed to explore the model’s statistical properties. The results demonstrate that the Ising model is capable of replicating the majority of the statistical features analyzed. ...

April 26, 2025 · 2 min · Research Team

LLM-Enhanced Black-Litterman Portfolio Optimization

LLM-Enhanced Black-Litterman Portfolio Optimization ArXiv ID: 2504.14345 “View on arXiv” Authors: Unknown Abstract The Black-Litterman model addresses the sensitivity issues of tra- ditional mean-variance optimization by incorporating investor views, but systematically generating these views remains a key challenge. This study proposes and validates a systematic frame- work that translates return forecasts and predictive uncertainty from Large Language Models (LLMs) into the core inputs for the Black-Litterman model: investor views and their confidence lev- els. Through a backtest on S&P 500 constituents, we demonstrate that portfolios driven by top-performing LLMs significantly out- perform traditional baselines in both absolute and risk-adjusted terms. Crucially, our analysis reveals that each LLM exhibits a dis- tinct and consistent investment style which is the primary driver of performance. We found that the selection of an LLM is therefore not a search for a single best forecaster, but a strategic choice of an investment style whose success is contingent on its alignment with the prevailing market regime. The source code and data are available at https://github.com/youngandbin/LLM-BLM. ...

April 19, 2025 · 2 min · Research Team

Matrix H-theory approach to stock market fluctuations

Matrix H-theory approach to stock market fluctuations ArXiv ID: 2503.08697 “View on arXiv” Authors: Unknown Abstract We introduce matrix H theory, a framework for analyzing collective behavior arising from multivariate stochastic processes with hierarchical structure. The theory models the joint distribution of the multiple variables (the measured signal) as a compound of a large-scale multivariate distribution with the distribution of a slowly fluctuating background. The background is characterized by a hierarchical stochastic evolution of internal degrees of freedom, representing the correlations between stocks at different time scales. As in its univariate version, the matrix H-theory formalism also has two universality classes: Wishart and inverse Wishart, enabling a concise description of both the background and the signal probability distributions in terms of Meijer G-functions with matrix argument. Empirical analysis of daily returns of stocks within the S&P500 demonstrates the effectiveness of matrix H theory in describing fluctuations in stock markets. These findings contribute to a deeper understanding of multivariate hierarchical processes and offer potential for developing more informed portfolio strategies in financial markets. ...

March 6, 2025 · 2 min · Research Team

The lexical ratio: A new perspective on portfolio diversification

The lexical ratio: A new perspective on portfolio diversification ArXiv ID: 2411.06080 “View on arXiv” Authors: Unknown Abstract Portfolio diversification, traditionally measured through asset correlations and volatilitybased metrics, is fundamental to managing financial risk. However, existing diversification metrics often overlook non-numerical relationships between assets that can impact portfolio stability, particularly during market stresses. This paper introduces the lexical ratio (LR), a novel metric that leverages textual data to capture diversification dimensions absent in standard approaches. By treating each asset as a unique document composed of sectorspecific and financial keywords, the LR evaluates portfolio diversification by distributing these terms across assets, incorporating entropy-based insights from information theory. We thoroughly analyze LR’s properties, including scale invariance, concavity, and maximality, demonstrating its theoretical robustness and ability to enhance risk-adjusted portfolio returns. Using empirical tests on S&P 500 portfolios, we compare LR’s performance to established metrics such as Markowitz’s volatility-based measures and diversification ratios. Our tests reveal LR’s superiority in optimizing portfolio returns, especially under varied market conditions. Our findings show that LR aligns with conventional metrics and captures unique diversification aspects, suggesting it is a viable tool for portfolio managers. ...

November 9, 2024 · 2 min · Research Team

On Accelerating Large-Scale Robust Portfolio Optimization

On Accelerating Large-Scale Robust Portfolio Optimization ArXiv ID: 2408.07879 “View on arXiv” Authors: Unknown Abstract Solving large-scale robust portfolio optimization problems is challenging due to the high computational demands associated with an increasing number of assets, the amount of data considered, and market uncertainty. To address this issue, we propose an extended supporting hyperplane approximation approach for efficiently solving a class of distributionally robust portfolio problems for a general class of additively separable utility functions and polyhedral ambiguity distribution set, applied to a large-scale set of assets. Our technique is validated using a large-scale portfolio of the S&P 500 index constituents, demonstrating robust out-of-sample trading performance. More importantly, our empirical studies show that this approach significantly reduces computational time compared to traditional concave Expected Log-Growth (ELG) optimization, with running times decreasing from several thousand seconds to just a few. This method provides a scalable and practical solution to large-scale robust portfolio optimization, addressing both theoretical and practical challenges. ...

August 15, 2024 · 2 min · Research Team

The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models

The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models ArXiv ID: 2407.16780 “View on arXiv” Authors: Unknown Abstract Predicting the S&P 500 index volatility is crucial for investors and financial analysts as it helps assess market risk and make informed investment decisions. Volatility represents the level of uncertainty or risk related to the size of changes in a security’s value, making it an essential indicator for financial planning. This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500: the established GARCH model, known for capturing historical volatility patterns; an LSTM network that utilizes past volatility and log returns; a hybrid LSTM-GARCH model that combines the strengths of both approaches; and an advanced version of the hybrid model that also factors in the VIX index to gauge market sentiment. This analysis is based on a daily dataset that includes S&P 500 and VIX index data, covering the period from January 3, 2000, to December 21, 2023. Through rigorous testing and comparison, we found that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model. Including the VIX index in the hybrid model further enhances its forecasting ability by incorporating real-time market sentiment. The results of this study offer valuable insights for achieving more accurate volatility predictions, enabling better risk management and strategic investment decisions in the volatile environment of the S&P 500. ...

July 23, 2024 · 2 min · Research Team