Residual U-net with Self-Attention to Solve Multi-Agent Time-Consistent Optimal Trade Execution
Residual U-net with Self-Attention to Solve Multi-Agent Time-Consistent Optimal Trade Execution ArXiv ID: 2312.09353 “View on arXiv” Authors: Unknown Abstract In this paper, we explore the use of a deep residual U-net with self-attention to solve the the continuous time time-consistent mean variance optimal trade execution problem for multiple agents and assets. Given a finite horizon we formulate the time-consistent mean-variance optimal trade execution problem following the Almgren-Chriss model as a Hamilton-Jacobi-Bellman (HJB) equation. The HJB formulation is known to have a viscosity solution to the unknown value function. We reformulate the HJB to a backward stochastic differential equation (BSDE) to extend the problem to multiple agents and assets. We utilize a residual U-net with self-attention to numerically approximate the value function for multiple agents and assets which can be used to determine the time-consistent optimal control. In this paper, we show that the proposed neural network approach overcomes the limitations of finite difference methods. We validate our results and study parameter sensitivity. With our framework we study how an agent with significant price impact interacts with an agent without any price impact and the optimal strategies used by both types of agents. We also study the performance of multiple sellers and buyers and how they compare to a holding strategy under different economic conditions. ...