false

Predicting Stock Market Crash with Bayesian Generalised Pareto Regression

Predicting Stock Market Crash with Bayesian Generalised Pareto Regression ArXiv ID: 2506.17549 “View on arXiv” Authors: Sourish Das Abstract This paper develops a Bayesian Generalised Pareto Regression (GPR) model to forecast extreme losses in Indian equity markets, with a focus on the Nifty 50 index. Extreme negative returns, though rare, can cause significant financial disruption, and accurate modelling of such events is essential for effective risk management. Traditional Generalised Pareto Distribution (GPD) models often ignore market conditions; in contrast, our framework links the scale parameter to covariates using a log-linear function, allowing tail risk to respond dynamically to market volatility. We examine four prior choices for Bayesian regularisation of regression coefficients: Cauchy, Lasso (Laplace), Ridge (Gaussian), and Zellner’s g-prior. Simulation results suggest that the Cauchy prior delivers the best trade-off between predictive accuracy and model simplicity, achieving the lowest RMSE, AIC, and BIC values. Empirically, we apply the model to large negative returns (exceeding 5%) in the Nifty 50 index. Volatility measures from the Nifty 50, S&P 500, and gold are used as covariates to capture both domestic and global risk drivers. Our findings show that tail risk increases significantly with higher market volatility. In particular, both S&P 500 and gold volatilities contribute meaningfully to crash prediction, highlighting global spillover and flight-to-safety effects. The proposed GPR model offers a robust and interpretable approach for tail risk forecasting in emerging markets. It improves upon traditional EVT-based models by incorporating real-time financial indicators, making it useful for practitioners, policymakers, and financial regulators concerned with systemic risk and stress testing. ...

June 21, 2025 · 3 min · Research Team

News Sentiment Embeddings for Stock Price Forecasting

News Sentiment Embeddings for Stock Price Forecasting ArXiv ID: 2507.01970 “View on arXiv” Authors: Ayaan Qayyum Abstract This paper will discuss how headline data can be used to predict stock prices. The stock price in question is the SPDR S&P 500 ETF Trust, also known as SPY that tracks the performance of the largest 500 publicly traded corporations in the United States. A key focus is to use news headlines from the Wall Street Journal (WSJ) to predict the movement of stock prices on a daily timescale with OpenAI-based text embedding models used to create vector encodings of each headline with principal component analysis (PCA) to exact the key features. The challenge of this work is to capture the time-dependent and time-independent, nuanced impacts of news on stock prices while handling potential lag effects and market noise. Financial and economic data were collected to improve model performance; such sources include the U.S. Dollar Index (DXY) and Treasury Interest Yields. Over 390 machine-learning inference models were trained. The preliminary results show that headline data embeddings greatly benefit stock price prediction by at least 40% compared to training and optimizing a machine learning system without headline data embeddings. ...

June 19, 2025 · 2 min · Research Team

Multi-dimensional queue-reactive model and signal-driven models: a unified framework

Multi-dimensional queue-reactive model and signal-driven models: a unified framework ArXiv ID: 2506.11843 “View on arXiv” Authors: Emmanouil Sfendourakis Abstract We present a Markovian market model driven by a hidden Brownian efficient price. In particular, we extend the queue-reactive model, making its dynamics dependent on the efficient price. Our study focuses on two sub-models: a signal-driven price model where the mid-price jump rates depend on the efficient price and an observable signal, and the usual queue-reactive model dependent on the efficient price via the intensities of the order arrivals. This way, we are able to correlate the evolution of limit order books of different stocks. We prove the stability of the observed mid-price around the efficient price under natural assumptions. Precisely, we show that at the macroscopic scale, prices behave as diffusions. We also develop a maximum likelihood estimation procedure for the model, and test it numerically. Our model is them used to backest trading strategies in a liquidation context. ...

June 13, 2025 · 2 min · Research Team

Optimal Execution under Liquidity Uncertainty

Optimal Execution under Liquidity Uncertainty ArXiv ID: 2506.11813 “View on arXiv” Authors: Etienne Chevalier, Yadh Hafsi, Vathana Ly Vath, Sergio Pulido Abstract We study an optimal execution strategy for purchasing a large block of shares over a fixed time horizon. The execution problem is subject to a general price impact that gradually dissipates due to market resilience. This resilience is modeled through a potentially arbitrary limit-order book shape. To account for liquidity dynamics, we introduce a stochastic volume effect governing the recovery of the deviation process, which represents the difference between the impacted and unaffected price. Additionally, we incorporate stochastic liquidity variations through a regime-switching Markov chain to capture abrupt shifts in market conditions. We study this singular control problem, where the trader optimally determines the timing and rate of purchases to minimize execution costs. The associated value function to this optimization problem is shown to satisfy a system of variational Hamilton-Jacobi-Bellman inequalities. Moreover, we establish that it is the unique viscosity solution to this HJB system and study the analytical properties of the free boundary separating the execution and continuation regions. To illustrate our results, we present numerical examples under different limit-order book configurations, highlighting the interplay between price impact, resilience dynamics, and stochastic liquidity regimes in shaping the optimal execution strategy. ...

June 13, 2025 · 2 min · Research Team

EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements

EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements ArXiv ID: 2506.08762 “View on arXiv” Authors: Issa Sugiura, Takashi Ishida, Taro Makino, Chieko Tazuke, Takanori Nakagawa, Kosuke Nakago, David Ha Abstract Financial analysis presents complex challenges that could leverage large language model (LLM) capabilities. However, the scarcity of challenging financial datasets, particularly for Japanese financial data, impedes academic innovation in financial analytics. As LLMs advance, this lack of accessible research resources increasingly hinders their development and evaluation in this specialized domain. To address this gap, we introduce EDINET-Bench, an open-source Japanese financial benchmark designed to evaluate the performance of LLMs on challenging financial tasks including accounting fraud detection, earnings forecasting, and industry prediction. EDINET-Bench is constructed by downloading annual reports from the past 10 years from Japan’s Electronic Disclosure for Investors’ NETwork (EDINET) and automatically assigning labels corresponding to each evaluation task. Our experiments reveal that even state-of-the-art LLMs struggle, performing only slightly better than logistic regression in binary classification for fraud detection and earnings forecasting. These results highlight significant challenges in applying LLMs to real-world financial applications and underscore the need for domain-specific adaptation. Our dataset, benchmark construction code, and evaluation code is publicly available to facilitate future research in finance with LLMs. ...

June 10, 2025 · 2 min · Research Team

An analysis of capital market through the lens of integral transforms: exploring efficient markets and information asymmetry

An analysis of capital market through the lens of integral transforms: exploring efficient markets and information asymmetry ArXiv ID: 2506.06350 “View on arXiv” Authors: Kiran Sharma, Abhijit Dutta, Rupak Mukherjee Abstract Post Modigliani and Miller (1958), the concept of usage of arbitrage created a permanent mark on the discourses of financial framework. The arbitrage process is largely based on information dissemination amongst the stakeholders operating in the financial market. The advent of the efficient market Hypothesis draws close to the M&M hypothesis. Giving importance to the arbitrage process, which effects the price discovery in the stock market. This divided the market as random and efficient cohort system. The focus was on which information forms a key factor in deciding the price formation in the market. However, the conventional techniques of analysis do not permit the price cycles to be interpreted beyond its singular wave-like cyclical movement. The apparent cyclic measurement is not coherent as the technical analysis does not give sustained result. Hence adaption of theories and computation from mathematical methods of physics ensures that these cycles are decomposed and the effect of the broken-down cycles is interpreted to understand the overall effect of information on price formation and discovery. In order to break the cycle this paper uses spectrum analysis to decompose and understand the above-said phenomenon in determining the price behavior in National Stock Exchange of India (NSE). ...

June 2, 2025 · 2 min · Research Team

Explainable-AI powered stock price prediction using time series transformers: A Case Study on BIST100

Explainable-AI powered stock price prediction using time series transformers: A Case Study on BIST100 ArXiv ID: 2506.06345 “View on arXiv” Authors: Sukru Selim Calik, Andac Akyuz, Zeynep Hilal Kilimci, Kerem Colak Abstract Financial literacy is increasingly dependent on the ability to interpret complex financial data and utilize advanced forecasting tools. In this context, this study proposes a novel approach that combines transformer-based time series models with explainable artificial intelligence (XAI) to enhance the interpretability and accuracy of stock price predictions. The analysis focuses on the daily stock prices of the five highest-volume banks listed in the BIST100 index, along with XBANK and XU100 indices, covering the period from January 2015 to March 2025. Models including DLinear, LTSNet, Vanilla Transformer, and Time Series Transformer are employed, with input features enriched by technical indicators. SHAP and LIME techniques are used to provide transparency into the influence of individual features on model outputs. The results demonstrate the strong predictive capabilities of transformer models and highlight the potential of interpretable machine learning to empower individuals in making informed investment decisions and actively engaging in financial markets. ...

June 1, 2025 · 2 min · Research Team

The Hype Index: an NLP-driven Measure of Market News Attention

The Hype Index: an NLP-driven Measure of Market News Attention ArXiv ID: 2506.06329 “View on arXiv” Authors: Zheng Cao, Wanchaloem Wunkaew, Helyette Geman Abstract This paper introduces the Hype Index as a novel metric to quantify media attention toward large-cap equities, leveraging advances in Natural Language Processing (NLP) for extracting predictive signals from financial news. Using the S&P 100 as the focus universe, we first construct a News Count-Based Hype Index, which measures relative media exposure by computing the share of news articles referencing each stock or sector. We then extend it to the Capitalization Adjusted Hype Index, adjusts for economic size by taking the ratio of a stock’s or sector’s media weight to its market capitalization weight within its industry or sector. We compute both versions of the Hype Index at the stock and sector levels, and evaluate them through multiple lenses: (1) their classification into different hype groups, (2) their associations with returns, volatility, and VIX index at various lags, (3) their signaling power for short-term market movements, and (4) their empirical properties including correlations, samplings, and trends. Our findings suggest that the Hype Index family provides a valuable set of tools for stock volatility analysis, market signaling, and NLP extensions in Finance. ...

May 30, 2025 · 2 min · Research Team

TIP-Search: Time-Predictable Inference Scheduling for Market Prediction under Uncertain Load

TIP-Search: Time-Predictable Inference Scheduling for Market Prediction under Uncertain Load ArXiv ID: 2506.08026 “View on arXiv” Authors: Xibai Wang Abstract This paper proposes TIP-Search, a time-predictable inference scheduling framework for real-time market prediction under uncertain workloads. Motivated by the strict latency demands in high-frequency financial systems, TIP-Search dynamically selects a deep learning model from a heterogeneous pool, aiming to maximize predictive accuracy while satisfying per-task deadline constraints. Our approach profiles latency and generalization performance offline, then performs online task-aware selection without relying on explicit input domain labels. We evaluate TIP-Search on three real-world limit order book datasets (FI-2010, Binance BTC/USDT, LOBSTER AAPL) and demonstrate that it outperforms static baselines with up to 8.5% improvement in accuracy and 100% deadline satisfaction. Our results highlight the effectiveness of TIP-Search in robust low-latency financial inference under uncertainty. ...

May 30, 2025 · 2 min · Research Team

Forecasting Nigerian Equity Stock Returns Using Long Short-Term Memory Technique

Forecasting Nigerian Equity Stock Returns Using Long Short-Term Memory Technique ArXiv ID: 2507.01964 “View on arXiv” Authors: Adebola K. Ojo, Ifechukwude Jude Okafor Abstract Investors and stock market analysts face major challenges in predicting stock returns and making wise investment decisions. The predictability of equity stock returns can boost investor confidence, but it remains a difficult task. To address this issue, a study was conducted using a Long Short-term Memory (LSTM) model to predict future stock market movements. The study used a historical dataset from the Nigerian Stock Exchange (NSE), which was cleaned and normalized to design the LSTM model. The model was evaluated using performance metrics and compared with other deep learning models like Artificial and Convolutional Neural Networks (CNN). The experimental results showed that the LSTM model can predict future stock market prices and returns with over 90% accuracy when trained with a reliable dataset. The study concludes that LSTM models can be useful in predicting financial time-series-related problems if well-trained. Future studies should explore combining LSTM models with other deep learning techniques like CNN to create hybrid models that mitigate the risks associated with relying on a single model for future equity stock predictions. ...

May 27, 2025 · 2 min · Research Team