false

Characterizing asymmetric and bimodal long-term financial return distributions through quantum walks

Characterizing asymmetric and bimodal long-term financial return distributions through quantum walks ArXiv ID: 2505.13019 “View on arXiv” Authors: Stijn De Backer, Luis E. C. Rocha, Jan Ryckebusch, Koen Schoors Abstract The analysis of logarithmic return distributions defined over large time scales is crucial for understanding the long-term dynamics of asset price movements. For large time scales of the order of two trading years, the anticipated Gaussian behavior of the returns often does not emerge, and their distributions often exhibit a high level of asymmetry and bimodality. These features are inadequately captured by the majority of classical models to address financial time series and return distributions. In the presented analysis, we use a model based on the discrete-time quantum walk to characterize the observed asymmetry and bimodality. The quantum walk distinguishes itself from a classical diffusion process by the occurrence of interference effects, which allows for the generation of bimodal and asymmetric probability distributions. By capturing the broader trends and patterns that emerge over extended periods, this analysis complements traditional short-term models and offers opportunities to more accurately describe the probabilistic structure underlying long-term financial decisions. ...

May 19, 2025 · 2 min · Research Team

Why Regression? Binary Encoding Classification Brings Confidence to Stock Market Index Price Prediction

Why Regression? Binary Encoding Classification Brings Confidence to Stock Market Index Price Prediction ArXiv ID: 2506.03153 “View on arXiv” Authors: Junzhe Jiang, Chang Yang, Xinrun Wang, Bo Li Abstract Stock market indices serve as fundamental market measurement that quantify systematic market dynamics. However, accurate index price prediction remains challenging, primarily because existing approaches treat indices as isolated time series and frame the prediction as a simple regression task. These methods fail to capture indices’ inherent nature as aggregations of constituent stocks with complex, time-varying interdependencies. To address these limitations, we propose Cubic, a novel end-to-end framework that explicitly models the adaptive fusion of constituent stocks for index price prediction. Our main contributions are threefold. i) Fusion in the latent space: we introduce the fusion mechanism over the latent embedding of the stocks to extract the information from the vast number of stocks. ii) Binary encoding classification: since regression tasks are challenging due to continuous value estimation, we reformulate the regression into the classification task, where the target value is converted to binary and we optimize the prediction of the value of each digit with cross-entropy loss. iii) Confidence-guided prediction and trading: we introduce the regularization loss to address market prediction uncertainty for the index prediction and design the rule-based trading policies based on the confidence. Extensive experiments across multiple stock markets and indices demonstrate that Cubic consistently outperforms state-of-the-art baselines in stock index prediction tasks, achieving superior performance on both forecasting accuracy metrics and downstream trading profitability. ...

May 18, 2025 · 2 min · Research Team

Foundation Time-Series AI Model for Realized Volatility Forecasting

Foundation Time-Series AI Model for Realized Volatility Forecasting ArXiv ID: 2505.11163 “View on arXiv” Authors: Anubha Goel, Puneet Pasricha, Martin Magris, Juho Kanniainen Abstract Time series foundation models (FMs) have emerged as a popular paradigm for zero-shot multi-domain forecasting. These models are trained on numerous diverse datasets and claim to be effective forecasters across multiple different time series domains, including financial data. In this study, we evaluate the effectiveness of FMs, specifically the TimesFM model, for volatility forecasting, a core task in financial risk management. We first evaluate TimesFM in its pretrained (zero-shot) form, followed by our custom fine-tuning procedure based on incremental learning, and compare the resulting models against standard econometric benchmarks. While the pretrained model provides a reasonable baseline, our findings show that incremental fine-tuning, which allows the model to adapt to new financial return data over time, is essential for learning volatility patterns effectively. Fine-tuned variants not only improve forecast accuracy but also statistically outperform traditional models, as demonstrated through Diebold-Mariano and Giacomini-White tests. These results highlight the potential of foundation models as scalable and adaptive tools for financial forecasting-capable of delivering strong performance in dynamic market environments when paired with targeted fine-tuning strategies. ...

May 16, 2025 · 2 min · Research Team

A Scalable Gradient-Based Optimization Framework for Sparse Minimum-Variance Portfolio Selection

A Scalable Gradient-Based Optimization Framework for Sparse Minimum-Variance Portfolio Selection ArXiv ID: 2505.10099 “View on arXiv” Authors: Sarat Moka, Matias Quiroz, Vali Asimit, Samuel Muller Abstract Portfolio optimization involves selecting asset weights to minimize a risk-reward objective, such as the portfolio variance in the classical minimum-variance framework. Sparse portfolio selection extends this by imposing a cardinality constraint: only $k$ assets from a universe of $p$ may be included. The standard approach models this problem as a mixed-integer quadratic program and relies on commercial solvers to find the optimal solution. However, the computational costs of such methods increase exponentially with $k$ and $p$, making them too slow for problems of even moderate size. We propose a fast and scalable gradient-based approach that transforms the combinatorial sparse selection problem into a constrained continuous optimization task via Boolean relaxation, while preserving equivalence with the original problem on the set of binary points. Our algorithm employs a tunable parameter that transmutes the auxiliary objective from a convex to a concave function. This allows a stable convex starting point, followed by a controlled path toward a sparse binary solution as the tuning parameter increases and the objective moves toward concavity. In practice, our method matches commercial solvers in asset selection for most instances and, in rare instances, the solution differs by a few assets whilst showing a negligible error in portfolio variance. ...

May 15, 2025 · 2 min · Research Team

An Efficient deep learning model to Predict Stock Price Movement Based on Limit Order Book

An Efficient deep learning model to Predict Stock Price Movement Based on Limit Order Book ArXiv ID: 2505.22678 “View on arXiv” Authors: Jiahao Yang, Ran Fang, Ming Zhang, Jun Zhou Abstract In high-frequency trading (HFT), leveraging limit order books (LOB) to model stock price movements is crucial for achieving profitable outcomes. However, this task is challenging due to the high-dimensional and volatile nature of the original data. Even recent deep learning models often struggle to capture price movement patterns effectively, particularly without well-designed features. We observed that raw LOB data exhibits inherent symmetry between the ask and bid sides, and the bid-ask differences demonstrate greater stability and lower complexity compared to the original data. Building on this insight, we propose a novel approach in which leverages the Siamese architecture to enhance the performance of existing deep learning models. The core idea involves processing the ask and bid sides separately using the same module with shared parameters. We applied our Siamese-based methods to several widely used strong baselines and validated their effectiveness using data from 14 military industry stocks in the Chinese A-share market. Furthermore, we integrated multi-head attention (MHA) mechanisms with the Long Short-Term Memory (LSTM) module to investigate its role in modeling stock price movements. Our experiments used raw data and widely used Order Flow Imbalance (OFI) features as input with some strong baseline models. The results show that our method improves the performance of strong baselines in over 75$% of cases, excluding the Multi-Layer Perception (MLP) baseline, which performed poorly and is not considered practical. Furthermore, we found that Multi-Head Attention can enhance model performance, particularly over shorter forecasting horizons. ...

May 14, 2025 · 2 min · Research Team

An Efficient Multi-scale Leverage Effect Estimator under Dependent Microstructure Noise

An Efficient Multi-scale Leverage Effect Estimator under Dependent Microstructure Noise ArXiv ID: 2505.08654 “View on arXiv” Authors: Ziyang Xiong, Zhao Chen, Christina Dan Wang Abstract Estimating the leverage effect from high-frequency data is vital but challenged by complex, dependent microstructure noise, often exhibiting non-Gaussian higher-order moments. This paper introduces a novel multi-scale framework for efficient and robust leverage effect estimation under such flexible noise structures. We develop two new estimators, the Subsampling-and-Averaging Leverage Effect (SALE) and the Multi-Scale Leverage Effect (MSLE), which adapt subsampling and multi-scale approaches holistically using a unique shifted window technique. This design simplifies the multi-scale estimation procedure and enhances noise robustness without requiring the pre-averaging approach. We establish central limit theorems and stable convergence, with MSLE achieving convergence rates of an optimal $n^{"-1/4"}$ and a near-optimal $n^{"-1/9"}$ for the noise-free and noisy settings, respectively. A cornerstone of our framework’s efficiency is a specifically designed MSLE weighting strategy that leverages covariance structures across scales. This significantly reduces asymptotic variance and, critically, yields substantially smaller finite-sample errors than existing methods under both noise-free and realistic noisy settings. Extensive simulations and empirical analyses confirm the superior efficiency, robustness, and practical advantages of our approach. ...

May 13, 2025 · 2 min · Research Team

Forecasting Intraday Volume in Equity Markets with Machine Learning

Forecasting Intraday Volume in Equity Markets with Machine Learning ArXiv ID: 2505.08180 “View on arXiv” Authors: Mihai Cucuringu, Kang Li, Chao Zhang Abstract This study focuses on forecasting intraday trading volumes, a crucial component for portfolio implementation, especially in high-frequency (HF) trading environments. Given the current scarcity of flexible methods in this area, we employ a suite of machine learning (ML) models enriched with numerous HF predictors to enhance the predictability of intraday trading volumes. Our findings reveal that intraday stock trading volume is highly predictable, especially with ML and considering commonality. Additionally, we assess the economic benefits of accurate volume forecasting through Volume Weighted Average Price (VWAP) strategies. The results demonstrate that precise intraday forecasting offers substantial advantages, providing valuable insights for traders to optimize their strategies. ...

May 13, 2025 · 2 min · Research Team

Can LLM-based Financial Investing Strategies Outperform the Market in Long Run?

Can LLM-based Financial Investing Strategies Outperform the Market in Long Run? ArXiv ID: 2505.07078 “View on arXiv” Authors: Weixian Waylon Li, Hyeonjun Kim, Mihai Cucuringu, Tiejun Ma Abstract Large Language Models (LLMs) have recently been leveraged for asset pricing tasks and stock trading applications, enabling AI agents to generate investment decisions from unstructured financial data. However, most evaluations of LLM timing-based investing strategies are conducted on narrow timeframes and limited stock universes, overstating effectiveness due to survivorship and data-snooping biases. We critically assess their generalizability and robustness by proposing FINSABER, a backtesting framework evaluating timing-based strategies across longer periods and a larger universe of symbols. Systematic backtests over two decades and 100+ symbols reveal that previously reported LLM advantages deteriorate significantly under broader cross-section and over a longer-term evaluation. Our market regime analysis further demonstrates that LLM strategies are overly conservative in bull markets, underperforming passive benchmarks, and overly aggressive in bear markets, incurring heavy losses. These findings highlight the need to develop LLM strategies that are able to prioritise trend detection and regime-aware risk controls over mere scaling of framework complexity. ...

May 11, 2025 · 2 min · Research Team

NewsNet-SDF: Stochastic Discount Factor Estimation with Pretrained Language Model News Embeddings via Adversarial Networks

NewsNet-SDF: Stochastic Discount Factor Estimation with Pretrained Language Model News Embeddings via Adversarial Networks ArXiv ID: 2505.06864 “View on arXiv” Authors: Shunyao Wang, Ming Cheng, Christina Dan Wang Abstract Stochastic Discount Factor (SDF) models provide a unified framework for asset pricing and risk assessment, yet traditional formulations struggle to incorporate unstructured textual information. We introduce NewsNet-SDF, a novel deep learning framework that seamlessly integrates pretrained language model embeddings with financial time series through adversarial networks. Our multimodal architecture processes financial news using GTE-multilingual models, extracts temporal patterns from macroeconomic data via LSTM networks, and normalizes firm characteristics, fusing these heterogeneous information sources through an innovative adversarial training mechanism. Our dataset encompasses approximately 2.5 million news articles and 10,000 unique securities, addressing the computational challenges of processing and aligning text data with financial time series. Empirical evaluations on U.S. equity data (1980-2022) demonstrate NewsNet-SDF substantially outperforms alternatives with a Sharpe ratio of 2.80. The model shows a 471% improvement over CAPM, over 200% improvement versus traditional SDF implementations, and a 74% reduction in pricing errors compared to the Fama-French five-factor model. In comprehensive comparisons, our deep learning approach consistently outperforms traditional, modern, and other neural asset pricing models across all key metrics. Ablation studies confirm that text embeddings contribute significantly more to model performance than macroeconomic features, with news-derived principal components ranking among the most influential determinants of SDF dynamics. These results validate the effectiveness of our multimodal deep learning approach in integrating unstructured text with traditional financial data for more accurate asset pricing, providing new insights for digital intelligent decision-making in financial technology. ...

May 11, 2025 · 2 min · Research Team

Multilayer Perceptron Neural Network Models in Asset Pricing: An Empirical Study on Large-Cap US Stocks

Multilayer Perceptron Neural Network Models in Asset Pricing: An Empirical Study on Large-Cap US Stocks ArXiv ID: 2505.01921 “View on arXiv” Authors: Shanyan Lai Abstract In this study, MLP models with dynamic structure are applied to factor models for asset pricing tasks. Concretely, the MLP pyramid model structure was employed on firm-characteristic-sorted portfolio factors for modelling the large-capital US stocks. It was further developed as a practicable factor investing strategy based on the predictions. The main findings in this chapter were evaluated from two angles: model performance and investing performance, which were compared from the periods with and without COVID-19. The empirical results indicated that with the restrictions of the data size, the MLP models no longer perform “deeper, better”, while the proposed MLP models with two and three hidden layers have higher flexibility to model the factors in this case. This study also verified the idea of previous works that MLP models for factor investing have more meaning in the downside risk control than in pursuing the absolute annual returns. ...

May 3, 2025 · 2 min · Research Team