false

An Analytic Solution for Asset Allocation with a Multivariate Laplace Distribution

An Analytic Solution for Asset Allocation with a Multivariate Laplace Distribution ArXiv ID: 2411.08967 “View on arXiv” Authors: Unknown Abstract In this short note the theory for multivariate asset allocation with elliptically symmetric distributions of returns, as developed in the author’s prior work, is specialized to the case of returns drawn from a multivariate Laplace distribution. This analysis delivers a result closely, but not perfectly, consistent with the conjecture presented in the author’s article Thinking Differently About Asset Allocation. The principal differences are due to the introduction of a term in the dimensionality of the problem, which was omitted from the conjectured solution, and a rescaling of the variance due to varying parameterizations of the univariate Laplace distribution. ...

November 13, 2024 · 2 min · Research Team

Analyst Reports and Stock Performance: Evidence from the Chinese Market

Analyst Reports and Stock Performance: Evidence from the Chinese Market ArXiv ID: 2411.08726 “View on arXiv” Authors: Unknown Abstract This article applies natural language processing (NLP) to extract and quantify textual information to predict stock performance. Using an extensive dataset of Chinese analyst reports and employing a customized BERT deep learning model for Chinese text, this study categorizes the sentiment of the reports as positive, neutral, or negative. The findings underscore the predictive capacity of this sentiment indicator for stock volatility, excess returns, and trading volume. Specifically, analyst reports with strong positive sentiment will increase excess return and intraday volatility, and vice versa, reports with strong negative sentiment also increase volatility and trading volume, but decrease future excess return. The magnitude of this effect is greater for positive sentiment reports than for negative sentiment reports. This article contributes to the empirical literature on sentiment analysis and the response of the stock market to news in the Chinese stock market. ...

November 13, 2024 · 2 min · Research Team

FinRobot: AI Agent for Equity Research and Valuation with Large Language Models

FinRobot: AI Agent for Equity Research and Valuation with Large Language Models ArXiv ID: 2411.08804 “View on arXiv” Authors: Unknown Abstract As financial markets grow increasingly complex, there is a rising need for automated tools that can effectively assist human analysts in equity research, particularly within sell-side research. While Generative AI (GenAI) has attracted significant attention in this field, existing AI solutions often fall short due to their narrow focus on technical factors and limited capacity for discretionary judgment. These limitations hinder their ability to adapt to new data in real-time and accurately assess risks, which diminishes their practical value for investors. This paper presents FinRobot, the first AI agent framework specifically designed for equity research. FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst. The system is structured around three specialized agents: the Data-CoT Agent, which aggregates diverse data sources for robust financial integration; the Concept-CoT Agent, which mimics an analysts reasoning to generate actionable insights; and the Thesis-CoT Agent, which synthesizes these insights into a coherent investment thesis and report. FinRobot provides thorough company analysis supported by precise numerical data, industry-appropriate valuation metrics, and realistic risk assessments. Its dynamically updatable data pipeline ensures that research remains timely and relevant, adapting seamlessly to new financial information. Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors. We open-source FinRobot at \url{“https://github. com/AI4Finance-Foundation/FinRobot”}. ...

November 13, 2024 · 2 min · Research Team

Isotropic Correlation Models for the Cross-Section of Equity Returns

Isotropic Correlation Models for the Cross-Section of Equity Returns ArXiv ID: 2411.08864 “View on arXiv” Authors: Unknown Abstract This note discusses some of the aspects of a model for the covariance of equity returns based on a simple “isotropic” structure in which all pairwise correlations are taken to be the same value. The effect of the structure on feasible values for the common correlation of returns and on the “effective degrees of freedom” within the equity cross-section are discussed, as well as the impact of this constraint on the asymptotic Normality of portfolio returns. An eigendecomposition of the covariance matrix is presented and used to partition variance into that from a common “market” factor and “non-diversifiable” idiosyncratic risk. A empirical analysis of the recent history of the returns of S&P 500 Index members is presented and compared to the expectations from both this model and linear factor models. This analysis supports the isotropic covariance model and does not seem to provide evidence in support of linear factor models. Analysis of portfolio selection under isotropic correlation is presented using mean-variance optimization for both heteroskedastic and homoskedastic cases. Portfolio selection for negative exponential utility maximizers is also discussed for the general case of distributions of returns with elliptical symmetry. The fact that idiosyncratic risk may not be removed by diversification in a model that the data supports undermines the basic premises of structures such as the C.A.P.M. and A.P.T. If the cross-section of equity returns is more accurately described by this structure then an inevitable consequence is that picking stocks is not a “pointless” activity, as the returns to residual risk would be non-zero. ...

November 13, 2024 · 2 min · Research Team

Quantifying Qualitative Insights: Leveraging LLMs to Market Predict

Quantifying Qualitative Insights: Leveraging LLMs to Market Predict ArXiv ID: 2411.08404 “View on arXiv” Authors: Unknown Abstract Recent advancements in Large Language Models (LLMs) have the potential to transform financial analytics by integrating numerical and textual data. However, challenges such as insufficient context when fusing multimodal information and the difficulty in measuring the utility of qualitative outputs, which LLMs generate as text, have limited their effectiveness in tasks such as financial forecasting. This study addresses these challenges by leveraging daily reports from securities firms to create high-quality contextual information. The reports are segmented into text-based key factors and combined with numerical data, such as price information, to form context sets. By dynamically updating few-shot examples based on the query time, the sets incorporate the latest information, forming a highly relevant set closely aligned with the query point. Additionally, a crafted prompt is designed to assign scores to the key factors, converting qualitative insights into quantitative results. The derived scores undergo a scaling process, transforming them into real-world values that are used for prediction. Our experiments demonstrate that LLMs outperform time-series models in market forecasting, though challenges such as imperfect reproducibility and limited explainability remain. ...

November 13, 2024 · 2 min · Research Team

Robot See, Robot Do: Imitation Reward for Noisy Financial Environments

Robot See, Robot Do: Imitation Reward for Noisy Financial Environments ArXiv ID: 2411.08637 “View on arXiv” Authors: Unknown Abstract The sequential nature of decision-making in financial asset trading aligns naturally with the reinforcement learning (RL) framework, making RL a common approach in this domain. However, the low signal-to-noise ratio in financial markets results in noisy estimates of environment components, including the reward function, which hinders effective policy learning by RL agents. Given the critical importance of reward function design in RL problems, this paper introduces a novel and more robust reward function by leveraging imitation learning, where a trend labeling algorithm acts as an expert. We integrate imitation (expert’s) feedback with reinforcement (agent’s) feedback in a model-free RL algorithm, effectively embedding the imitation learning problem within the RL paradigm to handle the stochasticity of reward signals. Empirical results demonstrate that this novel approach improves financial performance metrics compared to traditional benchmarks and RL agents trained solely using reinforcement feedback. ...

November 13, 2024 · 2 min · Research Team

Do LLM Personas Dream of Bull Markets? Comparing Human and AI Investment Strategies Through the Lens of the Five-Factor Model

Do LLM Personas Dream of Bull Markets? Comparing Human and AI Investment Strategies Through the Lens of the Five-Factor Model ArXiv ID: 2411.05801 “View on arXiv” Authors: Unknown Abstract Large Language Models (LLMs) have demonstrated the ability to adopt a personality and behave in a human-like manner. There is a large body of research that investigates the behavioural impacts of personality in less obvious areas such as investment attitudes or creative decision making. In this study, we investigated whether an LLM persona with a specific Big Five personality profile would perform an investment task similarly to a human with the same personality traits. We used a simulated investment task to determine if these results could be generalised into actual behaviours. In this simulated environment, our results show these personas produced meaningful behavioural differences in all assessed categories, with these behaviours generally being consistent with expectations derived from human research. We found that LLMs are able to generalise traits into expected behaviours in three areas: learning style, impulsivity and risk appetite while environmental attitudes could not be accurately represented. In addition, we showed that LLMs produce behaviour that is more reflective of human behaviour in a simulation environment compared to a survey environment. ...

October 28, 2024 · 2 min · Research Team

Extracting Alpha from Financial Analyst Networks

Extracting Alpha from Financial Analyst Networks ArXiv ID: 2410.20597 “View on arXiv” Authors: Unknown Abstract We investigate the effectiveness of a momentum trading signal based on the coverage network of financial analysts. This signal builds on the key information-brokerage role financial sell-side analysts play in modern stock markets. The baskets of stocks covered by each analyst can be used to construct a network between firms whose edge weights represent the number of analysts jointly covering both firms. Although the link between financial analysts coverage and co-movement of firms’ stock prices has been investigated in the literature, little effort has been made to systematically learn the most effective combination of signals from firms covered jointly by analysts in order to benefit from any spillover effect. To fill this gap, we build a trading strategy which leverages the analyst coverage network using a graph attention network. More specifically, our model learns to aggregate information from individual firm features and signals from neighbouring firms in a node-level forecasting task. We develop a portfolio based on those predictions which we demonstrate to exhibit an annualized returns of 29.44% and a Sharpe ratio of 4.06 substantially outperforming market baselines and existing graph machine learning based frameworks. We further investigate the performance and robustness of this strategy through extensive empirical analysis. Our paper represents one of the first attempts in using graph machine learning to extract actionable knowledge from the analyst coverage network for practical financial applications. ...

October 27, 2024 · 2 min · Research Team

A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images

A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images ArXiv ID: 2410.19291 “View on arXiv” Authors: Unknown Abstract Recently, deep learning in stock prediction has become an important branch. Image-based methods show potential by capturing complex visual patterns and spatial correlations, offering advantages in interpretability over time series models. However, image-based approaches are more prone to overfitting, hindering robust predictive performance. To improve accuracy, this paper proposes a novel method, named Sequence-based Multi-scale Fusion Regression Convolutional Neural Network (SMSFR-CNN), for predicting stock price movements in the China A-share market. By utilizing CNN to learn sequential features and combining them with image features, we improve the accuracy of stock trend prediction on the A-share market stock dataset. This approach reduces the search space for image features, stabilizes, and accelerates the training process. Extensive comparative experiments on 4,454 A-share stocks show that the model achieves a 61.15% positive predictive value and a 63.37% negative predictive value for the next 5 days, resulting in a total profit of 165.09%. ...

October 25, 2024 · 2 min · Research Team

Generation of synthetic financial time series by diffusion models

Generation of synthetic financial time series by diffusion models ArXiv ID: 2410.18897 “View on arXiv” Authors: Unknown Abstract Despite its practical significance, generating realistic synthetic financial time series is challenging due to statistical properties known as stylized facts, such as fat tails, volatility clustering, and seasonality patterns. Various generative models, including generative adversarial networks (GANs) and variational autoencoders (VAEs), have been employed to address this challenge, although no model yet satisfies all the stylized facts. We alternatively propose utilizing diffusion models, specifically denoising diffusion probabilistic models (DDPMs), to generate synthetic financial time series. This approach employs wavelet transformation to convert multiple time series (into images), such as stock prices, trading volumes, and spreads. Given these converted images, the model gains the ability to generate images that can be transformed back into realistic time series by inverse wavelet transformation. We demonstrate that our proposed approach satisfies stylized facts. ...

October 24, 2024 · 2 min · Research Team