false

Analysis of Contagion in China's Stock Market: A Hawkes Process Perspective

Analysis of Contagion in China’s Stock Market: A Hawkes Process Perspective ArXiv ID: 2512.08000 “View on arXiv” Authors: Junwei Yang Abstract This study explores contagion in the Chinese stock market using Hawkes processes to analyze autocorrelation and cross-correlation in multivariate time series data. We examine whether market indices exhibit trending behavior and whether sector indices influence one another. By fitting self-exciting and inhibitory Hawkes processes to daily returns of indices like the Shanghai Composite, Shenzhen Component, and ChiNext, as well as sector indices (CSI Consumer, Healthcare, and Financial), we identify long-term dependencies and trending patterns, including upward, downward, and oversold rebound trends. Results show that during high trading activity, sector indices tend to sustain their trends, while low activity periods exhibit strong sector rotation. This research models stock price movements using spatiotemporal Hawkes processes, leveraging conditional intensity functions to explain sector rotation, advancing the understanding of financial contagion. ...

December 8, 2025 · 2 min · Research Team

Hybrid Quantum-Classical Ensemble Learning for S&P 500 Directional Prediction

Hybrid Quantum-Classical Ensemble Learning for S&P 500 Directional Prediction ArXiv ID: 2512.15738 “View on arXiv” Authors: Abraham Itzhak Weinberg Abstract Financial market prediction is a challenging application of machine learning, where even small improvements in directional accuracy can yield substantial value. Most models struggle to exceed 55–57% accuracy due to high noise, non-stationarity, and market efficiency. We introduce a hybrid ensemble framework combining quantum sentiment analysis, Decision Transformer architecture, and strategic model selection, achieving 60.14% directional accuracy on S&P 500 prediction, a 3.10% improvement over individual models. Our framework addresses three limitations of prior approaches. First, architecture diversity dominates dataset diversity: combining different learning algorithms (LSTM, Decision Transformer, XGBoost, Random Forest, Logistic Regression) on the same data outperforms training identical architectures on multiple datasets (60.14% vs.\ 52.80%), confirmed by correlation analysis ($r>0.6$ among same-architecture models). Second, a 4-qubit variational quantum circuit enhances sentiment analysis, providing +0.8% to +1.5% gains per model. Third, smart filtering excludes weak predictors (accuracy $<52%$), improving ensemble performance (Top-7 models: 60.14% vs.\ all 35 models: 51.2%). We evaluate on 2020–2023 market data across seven instruments, covering diverse regimes including the COVID-19 crash and inflation-driven correction. McNemar’s test confirms statistical significance ($p<0.05$). Preliminary backtesting with confidence-based filtering (6+ model consensus) yields a Sharpe ratio of 1.2 versus buy-and-hold’s 0.8, demonstrating practical trading potential. ...

December 6, 2025 · 2 min · Research Team

Market Reactions and Information Spillovers in Bank Mergers: A Multi-Method Analysis of the Japanese Banking Sector

Market Reactions and Information Spillovers in Bank Mergers: A Multi-Method Analysis of the Japanese Banking Sector ArXiv ID: 2512.06550 “View on arXiv” Authors: Haibo Wang, Takeshi Tsuyuguchi Abstract Major bank mergers and acquisitions (M&A) transform the financial market structure, but their valuation and spillover effects remain open to question. This study examines the market reaction to two M&A events: the 2005 creation of Mitsubishi UFJ Financial Group following the Financial Big Bang in Japan, and the 2018 merger involving Resona Holdings after the global financial crisis. The multi-method analysis in this research combines several distinct methods to explore these M&A events. An event study using the market model, the capital asset pricing model (CAPM), and the Fama-French three-factor model is implemented to estimate cumulative abnormal returns (CAR) for valuation purposes. Vector autoregression (VAR) models are used to test for Granger causality and map dynamic effects using impulse response functions (IRFs) to investigate spillovers. Propensity score matching (PSM) helps provide a causal estimate of the average treatment effect on the treated (ATT). The analysis detected a significant positive market reaction to the mergers. The findings also suggest the presence of prolonged positive spillovers to other banks, which may indicate a synergistic effect among Japanese banks. Combining these methods provides a unique perspective on M&A events in the Japanese banking sector, offering valuable insights for investors, managers, and regulators concerned with market efficiency and systemic stability ...

December 6, 2025 · 2 min · Research Team

Wealth or Stealth? The Camouflage Effect in Insider Trading

Wealth or Stealth? The Camouflage Effect in Insider Trading ArXiv ID: 2512.06309 “View on arXiv” Authors: Jin Ma, Weixuan Xia, Jianfeng Zhang Abstract We consider a Kyle-type model where insider trading takes place among a potentially large population of liquidity traders and is subject to legal penalties. Insiders exploit the liquidity provided by the trading masses to “camouflage” their actions and balance expected wealth with the necessary stealth to avoid detection. Under a diverse spectrum of prosecution schemes, we establish the existence of equilibria for arbitrary population sizes and a unique limiting equilibrium. A convergence analysis determines the scale of insider trading by a stealth index $γ$, revealing that the equilibrium can be closely approximated by a simple limit due to diminished price informativeness. Empirical aspects are derived from two calibration experiments using non-overlapping data sets spanning from 1980 to 2018, which underline the indispensable role of a large population in insider trading models with legal risk, along with important implications for the incidence of stealth trading and the deterrent effect of legal enforcement. ...

December 6, 2025 · 2 min · Research Team

Predicting Price Movements in High-Frequency Financial Data with Spiking Neural Networks

Predicting Price Movements in High-Frequency Financial Data with Spiking Neural Networks ArXiv ID: 2512.05868 “View on arXiv” Authors: Brian Ezinwoke, Oliver Rhodes Abstract Modern high-frequency trading (HFT) environments are characterized by sudden price spikes that present both risk and opportunity, but conventional financial models often fail to capture the required fine temporal structure. Spiking Neural Networks (SNNs) offer a biologically inspired framework well-suited to these challenges due to their natural ability to process discrete events and preserve millisecond-scale timing. This work investigates the application of SNNs to high-frequency price-spike forecasting, enhancing performance via robust hyperparameter tuning with Bayesian Optimization (BO). This work converts high-frequency stock data into spike trains and evaluates three architectures: an established unsupervised STDP-trained SNN, a novel SNN with explicit inhibitory competition, and a supervised backpropagation network. BO was driven by a novel objective, Penalized Spike Accuracy (PSA), designed to ensure a network’s predicted price spike rate aligns with the empirical rate of price events. Simulated trading demonstrated that models optimized with PSA consistently outperformed their Spike Accuracy (SA)-tuned counterparts and baselines. Specifically, the extended SNN model with PSA achieved the highest cumulative return (76.8%) in simple backtesting, significantly surpassing the supervised alternative (42.54% return). These results validate the potential of spiking networks, when robustly tuned with task-specific objectives, for effective price spike forecasting in HFT. ...

December 5, 2025 · 2 min · Research Team

Beta-Dependent Gamma Feedback and Endogenous Volatility Amplification in Option Markets

Beta-Dependent Gamma Feedback and Endogenous Volatility Amplification in Option Markets ArXiv ID: 2511.22766 “View on arXiv” Authors: Haoying Dai Abstract We develop a theoretical framework that aims to link micro-level option hedging and stock-specific factor exposure with macro-level market turbulence and explain endogenous volatility amplification during gamma-squeeze events. By explicitly modeling market-maker delta-neutral hedging and incorporating beta-dependent volatility normalization, we derive a stability condition that characterizes the onset of a gamma-squeeze event. The model captures a nonlinear recursive feedback loop between market-maker hedging and price movements and the resulting self-reinforcing dynamics. From a complex-systems perspective, the dynamics represent a bounded nonlinear response in which effective gain depends jointly on beta-normalized shock perception and gamma-scaled sensitivity. Our analysis highlights that low-beta stocks exhibit disproportionately strong feedback even for modest absolute price movements. ...

November 27, 2025 · 2 min · Research Team

Integrating LSTM Networks with Neural Levy Processes for Financial Forecasting

Integrating LSTM Networks with Neural Levy Processes for Financial Forecasting ArXiv ID: 2512.07860 “View on arXiv” Authors: Mohammed Alruqimi, Luca Di Persio Abstract This paper investigates an optimal integration of deep learning with financial models for robust asset price forecasting. Specifically, we developed a hybrid framework combining a Long Short-Term Memory (LSTM) network with the Merton-Lévy jump-diffusion model. To optimise this framework, we employed the Grey Wolf Optimizer (GWO) for the LSTM hyperparameter tuning, and we explored three calibration methods for the Merton-Levy model parameters: Artificial Neural Networks (ANNs), the Marine Predators Algorithm (MPA), and the PyTorch-based TorchSDE library. To evaluate the predictive performance of our hybrid model, we compared it against several benchmark models, including a standard LSTM and an LSTM combined with the Fractional Heston model. This evaluation used three real-world financial datasets: Brent oil prices, the STOXX 600 index, and the IT40 index. Performance was assessed using standard metrics, including Mean Squared Error (MSE), Mean Absolute Error(MAE), Mean Squared Percentage Error (MSPE), and the coefficient of determination (R2). Our experimental results demonstrate that the hybrid model, combining a GWO-optimized LSTM network with the Levy-Merton Jump-Diffusion model calibrated using an ANN, outperformed the base LSTM model and all other models developed in this study. ...

November 26, 2025 · 2 min · Research Team

Portfolio Optimization via Transfer Learning

Portfolio Optimization via Transfer Learning ArXiv ID: 2511.21221 “View on arXiv” Authors: Kexin Wang, Xiaomeng Zhang, Xinyu Zhang Abstract Recognizing that asset markets generally exhibit shared informational characteristics, we develop a portfolio strategy based on transfer learning that leverages cross-market information to enhance the investment performance in the market of interest by forward validation. Our strategy asymptotically identifies and utilizes the informative datasets, selectively incorporating valid information while discarding the misleading information. This enables our strategy to achieve the maximum Sharpe ratio asymptotically. The promising performance is demonstrated by numerical studies and case studies of two portfolios: one consisting of stocks dual-listed in A-shares and H-shares, and another comprising equities from various industries of the United States. ...

November 26, 2025 · 2 min · Research Team

Re(Visiting) Time Series Foundation Models in Finance

Re(Visiting) Time Series Foundation Models in Finance ArXiv ID: 2511.18578 “View on arXiv” Authors: Eghbal Rahimikia, Hao Ni, Weiguan Wang Abstract Financial time series forecasting is central to trading, portfolio optimization, and risk management, yet it remains challenging due to noisy, non-stationary, and heterogeneous data. Recent advances in time series foundation models (TSFMs), inspired by large language models, offer a new paradigm for learning generalizable temporal representations from large and diverse datasets. This paper presents the first comprehensive empirical study of TSFMs in global financial markets. Using a large-scale dataset of daily excess returns across diverse markets, we evaluate zero-shot inference, fine-tuning, and pre-training from scratch against strong benchmark models. We find that off-the-shelf pre-trained TSFMs perform poorly in zero-shot and fine-tuning settings, whereas models pre-trained from scratch on financial data achieve substantial forecasting and economic improvements, underscoring the value of domain-specific adaptation. Increasing the dataset size, incorporating synthetic data augmentation, and applying hyperparameter tuning further enhance performance. ...

November 23, 2025 · 2 min · Research Team

Risk-Aware Deep Reinforcement Learning for Dynamic Portfolio Optimization

Risk-Aware Deep Reinforcement Learning for Dynamic Portfolio Optimization ArXiv ID: 2511.11481 “View on arXiv” Authors: Emmanuel Lwele, Sabuni Emmanuel, Sitali Gabriel Sitali Abstract This paper presents a deep reinforcement learning (DRL) framework for dynamic portfolio optimization under market uncertainty and risk. The proposed model integrates a Sharpe ratio-based reward function with direct risk control mechanisms, including maximum drawdown and volatility constraints. Proximal Policy Optimization (PPO) is employed to learn adaptive asset allocation strategies over historical financial time series. Model performance is benchmarked against mean-variance and equal-weight portfolio strategies using backtesting on high-performing equities. Results indicate that the DRL agent stabilizes volatility successfully but suffers from degraded risk-adjusted returns due to over-conservative policy convergence, highlighting the challenge of balancing exploration, return maximization, and risk mitigation. The study underscores the need for improved reward shaping and hybrid risk-aware strategies to enhance the practical deployment of DRL-based portfolio allocation models. ...

November 14, 2025 · 2 min · Research Team