false

Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange

Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange ArXiv ID: 2510.15938 “View on arXiv” Authors: Brian Godwin Lim, Dominic Dayta, Benedict Ryan Tiu, Renzo Roel Tan, Len Patrick Dominic Garces, Kazushi Ikeda Abstract The intricate dynamics of stock markets have led to extensive research on models that are able to effectively explain their inherent complexities. This study leverages the econometrics literature to explore the dynamic factor model as an interpretable model with sufficient predictive capabilities for capturing essential market phenomena. Although the model has been extensively applied for predictive purposes, this study focuses on analyzing the extracted loadings and common factors as an alternative framework for understanding stock price dynamics. The results reveal novel insights into traditional market theories when applied to the Philippine Stock Exchange using the Kalman method and maximum likelihood estimation, with subsequent validation against the capital asset pricing model. Notably, a one-factor model extracts a common factor representing systematic or market dynamics similar to the composite index, whereas a two-factor model extracts common factors representing market trends and volatility. Furthermore, an application of the model for nowcasting the growth rates of the Philippine gross domestic product highlights the potential of the extracted common factors as viable real-time market indicators, yielding over a 34% decrease in the out-of-sample prediction error. Overall, the results underscore the value of dynamic factor analysis in gaining a deeper understanding of market price movement dynamics. ...

October 8, 2025 · 2 min · Research Team

Nonparametric Estimation of Self- and Cross-Impact

Nonparametric Estimation of Self- and Cross-Impact ArXiv ID: 2510.06879 “View on arXiv” Authors: Natascha Hey, Eyal Neuman, Sturmius Tuschmann Abstract We introduce an offline nonparametric estimator for concave multi-asset propagator models based on a dataset of correlated price trajectories and metaorders. Compared to parametric models, our framework avoids parameter explosion in the multi-asset case and yields confidence bounds for the estimator. We implement the estimator using both proprietary metaorder data from Capital Fund Management (CFM) and publicly available S&P order flow data, where we augment the former dataset using a metaorder proxy. In particular, we provide unbiased evidence that self-impact is concave and exhibits a shifted power-law decay, and show that the metaorder proxy stabilizes the calibration. Moreover, we find that introducing cross-impact provides a significant gain in explanatory power, with concave specifications outperforming linear ones, suggesting that the square-root law extends to cross-impact. We also measure asymmetric cross-impact between assets driven by relative liquidity differences. Finally, we demonstrate that a shape-constrained projection of the nonparametric kernel not only ensures interpretability but also slightly outperforms established parametric models in terms of predictive accuracy. ...

October 8, 2025 · 2 min · Research Team

The New Quant: A Survey of Large Language Models in Financial Prediction and Trading

The New Quant: A Survey of Large Language Models in Financial Prediction and Trading ArXiv ID: 2510.05533 “View on arXiv” Authors: Weilong Fu Abstract Large language models are reshaping quantitative investing by turning unstructured financial information into evidence-grounded signals and executable decisions. This survey synthesizes research with a focus on equity return prediction and trading, consolidating insights from domain surveys and more than fifty primary studies. We propose a task-centered taxonomy that spans sentiment and event extraction, numerical and economic reasoning, multimodal understanding, retrieval-augmented generation, time series prompting, and agentic systems that coordinate tools for research, backtesting, and execution. We review empirical evidence for predictability, highlight design patterns that improve faithfulness such as retrieval first prompting and tool-verified numerics, and explain how signals feed portfolio construction under exposure, turnover, and capacity controls. We assess benchmarks and datasets for prediction and trading and outline desiderata-for time safe and economically meaningful evaluation that reports costs, latency, and capacity. We analyze challenges that matter in production, including temporal leakage, hallucination, data coverage and structure, deployment economics, interpretability, governance, and safety. The survey closes with recommendations for standardizing evaluation, building auditable pipelines, and advancing multilingual and cross-market research so that language-driven systems deliver robust and risk-controlled performance in practice. ...

October 7, 2025 · 2 min · Research Team

Uncovering Representation Bias for Investment Decisions in Open-Source Large Language Models

Uncovering Representation Bias for Investment Decisions in Open-Source Large Language Models ArXiv ID: 2510.05702 “View on arXiv” Authors: Fabrizio Dimino, Krati Saxena, Bhaskarjit Sarmah, Stefano Pasquali Abstract Large Language Models are increasingly adopted in financial applications to support investment workflows. However, prior studies have seldom examined how these models reflect biases related to firm size, sector, or financial characteristics, which can significantly impact decision-making. This paper addresses this gap by focusing on representation bias in open-source Qwen models. We propose a balanced round-robin prompting method over approximately 150 U.S. equities, applying constrained decoding and token-logit aggregation to derive firm-level confidence scores across financial contexts. Using statistical tests and variance analysis, we find that firm size and valuation consistently increase model confidence, while risk factors tend to decrease it. Confidence varies significantly across sectors, with the Technology sector showing the greatest variability. When models are prompted for specific financial categories, their confidence rankings best align with fundamental data, moderately with technical signals, and least with growth indicators. These results highlight representation bias in Qwen models and motivate sector-aware calibration and category-conditioned evaluation protocols for safe and fair financial LLM deployment. ...

October 7, 2025 · 2 min · Research Team

Signed network models for portfolio optimization

Signed network models for portfolio optimization ArXiv ID: 2510.05377 “View on arXiv” Authors: Bibhas Adhikari Abstract In this work, we consider weighted signed network representations of financial markets derived from raw or denoised correlation matrices, and examine how negative edges can be exploited to reduce portfolio risk. We then propose a discrete optimization scheme that reduces the asset selection problem to a desired size by building a time series of signed networks based on asset returns. To benchmark our approach, we consider two standard allocation strategies: Markowitz’s mean-variance optimization and the 1/N equally weighted portfolio. Both methods are applied on the reduced universe as well as on the full universe, using two datasets: (i) the Market Champions dataset, consisting of 21 major S&P500 companies over the 2020-2024 period, and (ii) a dataset of 199 assets comprising all S&P500 constituents with stock prices available and aligned with Google’s data. Empirical results show that portfolios constructed via our signed network selection perform as good as those from classical Markowitz model and the equal-weight benchmark in most occasions. ...

October 6, 2025 · 2 min · Research Team

From News to Returns: A Granger-Causal Hypergraph Transformer on the Sphere

From News to Returns: A Granger-Causal Hypergraph Transformer on the Sphere ArXiv ID: 2510.04357 “View on arXiv” Authors: Anoushka Harit, Zhongtian Sun, Jongmin Yu Abstract We propose the Causal Sphere Hypergraph Transformer (CSHT), a novel architecture for interpretable financial time-series forecasting that unifies \emph{“Granger-causal hypergraph structure”}, \emph{“Riemannian geometry”}, and \emph{“causally masked Transformer attention”}. CSHT models the directional influence of financial news and sentiment on asset returns by extracting multivariate Granger-causal dependencies, which are encoded as directional hyperedges on the surface of a hypersphere. Attention is constrained via angular masks that preserve both temporal directionality and geometric consistency. Evaluated on S&P 500 data from 2018 to 2023, including the 2020 COVID-19 shock, CSHT consistently outperforms baselines across return prediction, regime classification, and top-asset ranking tasks. By enforcing predictive causal structure and embedding variables in a Riemannian manifold, CSHT delivers both \emph{“robust generalisation across market regimes”} and \emph{“transparent attribution pathways”} from macroeconomic events to stock-level responses. These results suggest that CSHT is a principled and practical solution for trustworthy financial forecasting under uncertainty. ...

October 5, 2025 · 2 min · Research Team

Do Mutual Funds Make Active and Skilled Liquidity Choices in Portfolio Management? Evidence from India

Do Mutual Funds Make Active and Skilled Liquidity Choices in Portfolio Management? Evidence from India ArXiv ID: 2510.02741 “View on arXiv” Authors: Pankaj K Agarwal, H K Pradhan, Konark Saxena Abstract This study examines active liquidity management by Indian open-ended equity mutual funds. We find that fund managers respond to inflows by increasing cash holdings, which are later used to purchase less-liquid stocks at favourable valuations. Funds with less liquid portfolios tend to maintain larger cash reserves to manage flows. Funds that make active liquidity choices yield statistically and economically significant gross and net returns. The performance differences between funds with varying activeness in altering liquidity highlight the importance of active liquidity management in markets with substantial cross-sectional liquidity differences such as India. ...

October 3, 2025 · 2 min · Research Team

FinReflectKG -- MultiHop: Financial QA Benchmark for Reasoning with Knowledge Graph Evidence

FinReflectKG – MultiHop: Financial QA Benchmark for Reasoning with Knowledge Graph Evidence ArXiv ID: 2510.02906 “View on arXiv” Authors: Abhinav Arun, Reetu Raj Harsh, Bhaskarjit Sarmah, Stefano Pasquali Abstract Multi-hop reasoning over financial disclosures is often a retrieval problem before it becomes a reasoning or generation problem: relevant facts are dispersed across sections, filings, companies, and years, and LLMs often expend excessive tokens navigating noisy context. Without precise Knowledge Graph (KG)-guided selection of relevant context, even strong reasoning models either fail to answer or consume excessive tokens, whereas KG-linked evidence enables models to focus their reasoning on composing already retrieved facts. We present FinReflectKG - MultiHop, a benchmark built on FinReflectKG, a temporally indexed financial KG that links audited triples to source chunks from S&P 100 filings (2022-2024). Mining frequent 2-3 hop subgraph patterns across sectors (via GICS taxonomy), we generate financial analyst style questions with exact supporting evidence from the KG. A two-phase pipeline first creates QA pairs via pattern-specific prompts, followed by a multi-criteria quality control evaluation to ensure QA validity. We then evaluate three controlled retrieval scenarios: (S1) precise KG-linked paths; (S2) text-only page windows centered on relevant text spans; and (S3) relevant page windows with randomizations and distractors. Across both reasoning and non-reasoning models, KG-guided precise retrieval yields substantial gains on the FinReflectKG - MultiHop QA benchmark dataset, boosting correctness scores by approximately 24 percent while reducing token utilization by approximately 84.5 percent compared to the page window setting, which reflects the traditional vector retrieval paradigm. Spanning intra-document, inter-year, and cross-company scopes, our work underscores the pivotal role of knowledge graphs in efficiently connecting evidence for multi-hop financial QA. We also release a curated subset of the benchmark (555 QA Pairs) to catalyze further research. ...

October 3, 2025 · 3 min · Research Team

Signature-Informed Transformer for Asset Allocation

Signature-Informed Transformer for Asset Allocation ArXiv ID: 2510.03129 “View on arXiv” Authors: Yoontae Hwang, Stefan Zohren Abstract Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT’s core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation ...

October 3, 2025 · 2 min · Research Team

Mean-field theory of the Santa Fe model revisited: a systematic derivation from an exact BBGKY hierarchy for the zero-intelligence limit-order book model

Mean-field theory of the Santa Fe model revisited: a systematic derivation from an exact BBGKY hierarchy for the zero-intelligence limit-order book model ArXiv ID: 2510.01814 “View on arXiv” Authors: Taiki Wakatsuki, Kiyoshi Kanazawa Abstract The Santa Fe model is an established econophysics model for describing stochastic dynamics of the limit order book from the viewpoint of the zero-intelligence approach. While its foundation was studied by combining a dimensional analysis and a mean-field theory by E. Smith et al. in Quantitative Finance 2003, their arguments are rather heuristic and lack solid mathematical foundation; indeed, their mean-field equations were derived with heuristic arguments and their solutions were not explicitly obtained. In this work, we revisit the mean-field theory of the Santa Fe model from the viewpoint of kinetic theory – a traditional mathematical program in statistical physics. We study the exact master equation for the Santa Fe model and systematically derive the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchical equation. By applying the mean-field approximation, we derive the mean-field equation for the order-book density profile, parallel to the Boltzmann equation in conventional statistical physics. Furthermore, we obtain explicit and closed expression of the mean-field solutions. Our solutions have several implications: (1)Our scaling formulas are available for both $μ\to 0$ and $μ\to \infty$ asymptotics, where $μ$ is the market-order submission intensity. Particularly, the mean-field theory works very well for small $μ$, while its validity is partially limited for large $μ$. (2)The ``method of image’’ solution, heuristically derived by Bouchaud-Mézard-Potters in Quantitative Finance 2002, is obtained for large $μ$, serving as a mathematical foundation for their heuristic arguments. (3)Finally, we point out an error in E. Smith et al. 2003 in the scaling law for the diffusion constant due to a misspecification in their dimensional analysis. ...

October 2, 2025 · 3 min · Research Team