false

Clearing time randomization and transaction fees for auction market design

Clearing time randomization and transaction fees for auction market design ArXiv ID: 2405.09764 “View on arXiv” Authors: Unknown Abstract Flaws of a continuous limit order book mechanism raise the question of whether a continuous trading session and a periodic auction session would bring better efficiency. This paper wants to go further in designing a periodic auction when both a continuous market and a periodic auction market are available to traders. In a periodic auction, we discover that a strategic trader could take advantage of the accumulated information available along the auction duration by arriving at the latest moment before the auction closes, increasing the price impact on the market. Such price impact moves the clearing price away from the efficient price and may disturb the efficiency of a periodic auction market. We thus propose and quantify the effect of two remedies to mitigate these flaws: randomizing the auction’s closing time and optimally designing a transaction fees policy for both the strategic traders and other market participants. Our results show that these policies encourage a strategic trader to send their orders earlier to enhance the efficiency of the auction market, illustrated by data extracted from Alphabet and Apple stocks. ...

May 16, 2024 · 2 min · Research Team

NIFTY Financial News Headlines Dataset

NIFTY Financial News Headlines Dataset ArXiv ID: 2405.09747 “View on arXiv” Authors: Unknown Abstract We introduce and make publicly available the NIFTY Financial News Headlines dataset, designed to facilitate and advance research in financial market forecasting using large language models (LLMs). This dataset comprises two distinct versions tailored for different modeling approaches: (i) NIFTY-LM, which targets supervised fine-tuning (SFT) of LLMs with an auto-regressive, causal language-modeling objective, and (ii) NIFTY-RL, formatted specifically for alignment methods (like reinforcement learning from human feedback (RLHF)) to align LLMs via rejection sampling and reward modeling. Each dataset version provides curated, high-quality data incorporating comprehensive metadata, market indices, and deduplicated financial news headlines systematically filtered and ranked to suit modern LLM frameworks. We also include experiments demonstrating some applications of the dataset in tasks like stock price movement and the role of LLM embeddings in information acquisition/richness. The NIFTY dataset along with utilities (like truncating prompt’s context length systematically) are available on Hugging Face at https://huggingface.co/datasets/raeidsaqur/NIFTY. ...

May 16, 2024 · 2 min · Research Team

The $κ$-generalised Distribution for Stock Returns

The $κ$-generalised Distribution for Stock Returns ArXiv ID: 2405.09929 “View on arXiv” Authors: Unknown Abstract Empirical evidence shows stock returns are often heavy-tailed rather than normally distributed. The $κ$-generalised distribution, originated in the context of statistical physics by Kaniadakis, is characterised by the $κ$-exponential function that is asymptotically exponential for small values and asymptotically power law for large values. This proves to be a useful property and makes it a good candidate distribution for many types of quantities. In this paper we focus on fitting historic daily stock returns for the FTSE 100 and the top 100 Nasdaq stocks. Using a Monte-Carlo goodness of fit test there is evidence that the $κ$-generalised distribution is a good fit for a significant proportion of the 200 stock returns analysed. ...

May 16, 2024 · 2 min · Research Team

Data-driven measures of high-frequency trading

Data-driven measures of high-frequency trading ArXiv ID: 2405.08101 “View on arXiv” Authors: Unknown Abstract High-frequency trading (HFT) accounts for almost half of equity trading volume, yet it is not identified in public data. We develop novel data-driven measures of HFT activity that separate strategies that supply and demand liquidity. We train machine learning models to predict HFT activity observed in a proprietary dataset using concurrent public intraday data. Once trained on the dataset, these models generate HFT measures for the entire U.S. stock universe from 2010 to 2023. Our measures outperform conventional proxies, which struggle to capture HFT’s time dynamics. We further validate them using shocks to HFT activity, including latency arbitrage, exchange speed bumps, and data feed upgrades. Finally, our measures reveal how HFT affects fundamental information acquisition. Liquidity-supplying HFTs improve price discovery around earnings announcements while liquidity-demanding strategies impede it. ...

May 13, 2024 · 2 min · Research Team

A Mean Field Game between Informed Traders and a Broker

A Mean Field Game between Informed Traders and a Broker ArXiv ID: 2401.05257 “View on arXiv” Authors: Unknown Abstract We find closed-form solutions to the stochastic game between a broker and a mean-field of informed traders. In the finite player game, the informed traders observe a common signal and a private signal. The broker, on the other hand, observes the trading speed of each of his clients and provides liquidity to the informed traders. Each player in the game optimises wealth adjusted by inventory penalties. In the mean field version of the game, using a Gâteaux derivative approach, we characterise the solution to the game with a system of forward-backward stochastic differential equations that we solve explicitly. We find that the optimal trading strategy of the broker is linear on his own inventory, on the average inventory among informed traders, and on the common signal or the average trading speed of the informed traders. The Nash equilibrium we find helps informed traders decide how to use private information, and helps brokers decide how much of the order flow they should externalise or internalise when facing a large number of clients. ...

January 10, 2024 · 2 min · Research Team

Comparison of Markowitz Model and Single-Index Model on Portfolio Selection of Malaysian Stocks

Comparison of Markowitz Model and Single-Index Model on Portfolio Selection of Malaysian Stocks ArXiv ID: 2401.05264 “View on arXiv” Authors: Unknown Abstract Our article is focused on the application of Markowitz Portfolio Theory and the Single Index Model on 10-year historical monthly return data for 10 stocks included in FTSE Bursa Malaysia KLCI, which is also our market index, as well as a risk-free asset which is the monthly fixed deposit rate. We will calculate the minimum variance portfolio and maximum Sharpe portfolio for both the Markowitz model and Single Index model subject to five different constraints, with the results presented in the form of tables and graphs such that comparisons between the different models and constraints can be made. We hope this article will help provide useful information for future investors who are interested in the Malaysian stock market and would like to construct an efficient investment portfolio. Keywords: Markowitz Portfolio Theory, Single Index Model, FTSE Bursa Malaysia KLCI, Efficient Portfolio ...

January 10, 2024 · 2 min · Research Team

Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?

Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps? ArXiv ID: 2401.05447 “View on arXiv” Authors: Unknown Abstract We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation. ...

January 9, 2024 · 2 min · Research Team

Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection

Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection ArXiv ID: 2401.03737 “View on arXiv” Authors: Unknown Abstract This paper introduces MarketSenseAI, an innovative framework leveraging GPT-4’s advanced reasoning for selecting stocks in financial markets. By integrating Chain of Thought and In-Context Learning, MarketSenseAI analyzes diverse data sources, including market trends, news, fundamentals, and macroeconomic factors, to emulate expert investment decision-making. The development, implementation, and validation of the framework are elaborately discussed, underscoring its capability to generate actionable and interpretable investment signals. A notable feature of this work is employing GPT-4 both as a predictive mechanism and signal evaluator, revealing the significant impact of the AI-generated explanations on signal accuracy, reliability and acceptance. Through empirical testing on the competitive S&P 100 stocks over a 15-month period, MarketSenseAI demonstrated exceptional performance, delivering excess alpha of 10% to 30% and achieving a cumulative return of up to 72% over the period, while maintaining a risk profile comparable to the broader market. Our findings highlight the transformative potential of Large Language Models in financial decision-making, marking a significant leap in integrating generative AI into financial analytics and investment strategies. ...

January 8, 2024 · 2 min · Research Team

Market-Adaptive Ratio for Portfolio Management

Market-Adaptive Ratio for Portfolio Management ArXiv ID: 2312.13719 “View on arXiv” Authors: Unknown Abstract Traditional risk-adjusted returns, such as the Treynor, Sharpe, Sortino, and Information ratios, have been pivotal in portfolio asset allocation, focusing on minimizing risk while maximizing profit. Nevertheless, these metrics often fail to account for the distinct characteristics of bull and bear markets, leading to sub-optimal investment decisions. This paper introduces a novel approach called the Market-adaptive Ratio, which was designed to adjust risk preferences dynamically in response to market conditions. By integrating the $ρ$ parameter, which differentiates between bull and bear markets, this new ratio enables a more adaptive portfolio management strategy. The $ρ$ parameter is derived from historical data and implemented within a reinforcement learning framework, allowing the method to learn and optimize portfolio allocations based on prevailing market trends. Empirical analysis showed that the Market-adaptive Ratio outperformed the Sharpe Ratio by providing more robust risk-adjusted returns tailored to the specific market environment. This advance enhances portfolio performance by aligning investment strategies with the inherent dynamics of bull and bear markets, optimizing risk and return outcomes. ...

December 21, 2023 · 2 min · Research Team

Data-Driven Merton's Strategies via Policy Randomization

Data-Driven Merton’s Strategies via Policy Randomization ArXiv ID: 2312.11797 “View on arXiv” Authors: Unknown Abstract We study Merton’s expected utility maximization problem in an incomplete market, characterized by a factor process in addition to the stock price process, where all the model primitives are unknown. The agent under consideration is a price taker who has access only to the stock and factor value processes and the instantaneous volatility. We propose an auxiliary problem in which the agent can invoke policy randomization according to a specific class of Gaussian distributions, and prove that the mean of its optimal Gaussian policy solves the original Merton problem. With randomized policies, we are in the realm of continuous-time reinforcement learning (RL) recently developed in Wang et al. (2020) and Jia and Zhou (2022a, 2022b, 2023), enabling us to solve the auxiliary problem in a data-driven way without having to estimate the model primitives. Specifically, we establish a policy improvement theorem based on which we design both online and offline actor-critic RL algorithms for learning Merton’s strategies. A key insight from this study is that RL in general and policy randomization in particular are useful beyond the purpose for exploration – they can be employed as a technical tool to solve a problem that cannot be otherwise solved by mere deterministic policies. At last, we carry out both simulation and empirical studies in a stochastic volatility environment to demonstrate the decisive outperformance of the devised RL algorithms in comparison to the conventional model-based, plug-in method. ...

December 19, 2023 · 2 min · Research Team