false

Ergodic optimal liquidations in DeFi

Ergodic optimal liquidations in DeFi ArXiv ID: 2411.19637 “View on arXiv” Authors: Unknown Abstract We address the liquidation problem arising from the credit risk management in decentralised finance (DeFi) by formulating it as an ergodic optimal control problem. In decentralised derivatives exchanges, liquidation is triggered whenever the parties fail to maintain sufficient collateral for their open positions. Consequently, effectively managing and liquidating disposal of positions accrued through liquidations is a critical concern for decentralised derivatives exchanges. By simplifying the model (linear temporary and permanent price impacts, simplified cash balance dynamics), we derive the closed-form solutions for the optimal liquidation strategies, which balance immediate executions with the temporary and permanent price impacts, and the optimal long-term average reward. Numerical simulations further highlight the effectiveness of the proposed optimal strategy and demonstrate that the simplified model closely approximates the original market environment. Finally, we provide the method for calibrating the parameters in the model from the available data. ...

November 29, 2024 · 2 min · Research Team

Logarithmic regret in the ergodic Avellaneda-Stoikov market making model

Logarithmic regret in the ergodic Avellaneda-Stoikov market making model ArXiv ID: 2409.02025 “View on arXiv” Authors: Unknown Abstract We analyse the regret arising from learning the price sensitivity parameter $κ$ of liquidity takers in the ergodic version of the Avellaneda-Stoikov market making model. We show that a learning algorithm based on a maximum-likelihood estimator for the parameter achieves the regret upper bound of order $\ln^2 T$ in expectation. To obtain the result we need two key ingredients. The first is the twice differentiability of the ergodic constant under the misspecified parameter in the Hamilton-Jacobi-Bellman (HJB) equation with respect to $κ$, which leads to a second–order performance gap. The second is the learning rate of the regularised maximum-likelihood estimator which is obtained from concentration inequalities for Bernoulli signals. Numerical experiments confirm the convergence and the robustness of the proposed algorithm. ...

September 3, 2024 · 2 min · Research Team