false

Dynamic Factor Allocation Leveraging Regime-Switching Signals

Dynamic Factor Allocation Leveraging Regime-Switching Signals ArXiv ID: 2410.14841 “View on arXiv” Authors: Unknown Abstract This article explores dynamic factor allocation by analyzing the cyclical performance of factors through regime analysis. The authors focus on a U.S. equity investment universe comprising seven long-only indices representing the market and six style factors: value, size, momentum, quality, low volatility, and growth. Their approach integrates factor-specific regime inferences of each factor index’s active performance relative to the market into the Black-Litterman model to construct a fully-invested, long-only multi-factor portfolio. First, the authors apply the sparse jump model (SJM) to identify bull and bear market regimes for individual factors, using a feature set based on risk and return measures from historical factor active returns, as well as variables reflecting the broader market environment. The regimes identified by the SJM exhibit enhanced stability and interpretability compared to traditional methods. A hypothetical single-factor long-short strategy is then used to assess these regime inferences and fine-tune hyperparameters, resulting in a positive Sharpe ratio of this strategy across all factors with low correlation among them. These regime inferences are then incorporated into the Black-Litterman framework to dynamically adjust allocations among the seven indices, with an equally weighted (EW) portfolio serving as the benchmark. Empirical results show that the constructed multi-factor portfolio significantly improves the information ratio (IR) relative to the market, raising it from just 0.05 for the EW benchmark to approximately 0.4. When measured relative to the EW benchmark itself, the dynamic allocation achieves an IR of around 0.4 to 0.5. The strategy also enhances absolute portfolio performance across key metrics such as the Sharpe ratio and maximum drawdown. ...

October 18, 2024 · 2 min · Research Team

Asset and Factor Risk Budgeting: A Balanced Approach

Asset and Factor Risk Budgeting: A Balanced Approach ArXiv ID: 2312.11132 “View on arXiv” Authors: Unknown Abstract Portfolio optimization methods have evolved significantly since Markowitz introduced the mean-variance framework in 1952. While the theoretical appeal of this approach is undeniable, its practical implementation poses important challenges, primarily revolving around the intricate task of estimating expected returns. As a result, practitioners and scholars have explored alternative methods that prioritize risk management and diversification. One such approach is Risk Budgeting, where portfolio risk is allocated among assets according to predefined risk budgets. The effectiveness of Risk Budgeting in achieving true diversification can, however, be questioned, given that asset returns are often influenced by a small number of risk factors. From this perspective, one question arises: is it possible to allocate risk at the factor level using the Risk Budgeting approach? First, we introduce a comprehensive framework to address this question by introducing risk measures directly associated with risk factor exposures and demonstrating the desirable mathematical properties of these risk measures, making them suitable for optimization. Then, we propose a novel framework to find portfolios that effectively balance the risk contributions from both assets and factors. Leveraging standard stochastic algorithms, our framework enables the use of a wide range of risk measures to construct diversified portfolios. ...

December 18, 2023 · 2 min · Research Team