false

NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities

NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities ArXiv ID: 2408.01499 “View on arXiv” Authors: Unknown Abstract The use of machine learning for statistical modeling (and thus, generative modeling) has grown in popularity with the proliferation of time series models, text-to-image models, and especially large language models. Fundamentally, the goal of classical factor modeling is statistical modeling of stock returns, and in this work, we explore using deep generative modeling to enhance classical factor models. Prior work has explored the use of deep generative models in order to model hundreds of stocks, leading to accurate risk forecasting and alpha portfolio construction; however, that specific model does not allow for easy factor modeling interpretation in that the factor exposures cannot be deduced. In this work, we introduce NeuralFactors, a novel machine-learning based approach to factor analysis where a neural network outputs factor exposures and factor returns, trained using the same methodology as variational autoencoders. We show that this model outperforms prior approaches both in terms of log-likelihood performance and computational efficiency. Further, we show that this method is competitive to prior work in generating realistic synthetic data, covariance estimation, risk analysis (e.g., value at risk, or VaR, of portfolios), and portfolio optimization. Finally, due to the connection to classical factor analysis, we analyze how the factors our model learns cluster together and show that the factor exposures could be used for embedding stocks. ...

August 2, 2024 · 2 min · Research Team

Economic Forces in Stock Returns

Economic Forces in Stock Returns ArXiv ID: 2401.04132 “View on arXiv” Authors: Unknown Abstract When analyzing the components influencing the stock prices, it is commonly believed that economic activities play an important role. More specifically, asset prices are more sensitive to the systematic economic news that impose a pervasive effect on the whole market. Moreover, the investors will not be rewarded for bearing idiosyncratic risks as such risks are diversifiable. In the paper Economic Forces and the Stock Market 1986, the authors introduced an attribution model to identify the specific systematic economic forces influencing the market. They first defined and examined five classic factors from previous research papers: Industrial Production, Unanticipated Inflation, Change in Expected Inflation, Risk Premia, and The Term Structure. By adding in new factors, the Market Indices, Consumptions and Oil Prices, one by one, they examined the significant contribution of each factor to the stock return. The paper concluded that the stock returns are exposed to the systematic economic news, and they are priced with respect to their risk exposure. Also, the significant factors can be identified by simply adopting their model. Driven by such motivation, we conduct an attribution analysis based on the general framework of their model to further prove the importance of the economic factors and identify the specific identity of significant factors. ...

January 6, 2024 · 2 min · Research Team

Latent Factor Analysis in Short Panels

Latent Factor Analysis in Short Panels ArXiv ID: 2306.14004 “View on arXiv” Authors: Unknown Abstract We develop a pseudo maximum likelihood method for latent factor analysis in short panels without imposing sphericity nor Gaussianity. We derive an asymptotically uniformly most powerful invariant test for the number of factors. On a large panel of monthly U.S. stock returns, we separate month after month systematic and idiosyncratic risks in short subperiods of bear vs. bull market. We observe an uptrend in the paths of total and idiosyncratic volatilities. The systematic risk explains a large part of the cross-sectional total variance in bear markets but is not driven by a single factor and not spanned by observed factors. ...

June 24, 2023 · 1 min · Research Team