false

Explainable Federated Learning for U.S. State-Level Financial Distress Modeling

Explainable Federated Learning for U.S. State-Level Financial Distress Modeling ArXiv ID: 2511.08588 “View on arXiv” Authors: Lorenzo Carta, Fernando Spadea, Oshani Seneviratne Abstract We present the first application of federated learning (FL) to the U.S. National Financial Capability Study, introducing an interpretable framework for predicting consumer financial distress across all 50 states and the District of Columbia without centralizing sensitive data. Our cross-silo FL setup treats each state as a distinct data silo, simulating real-world governance in nationwide financial systems. Unlike prior work, our approach integrates two complementary explainable AI techniques to identify both global (nationwide) and local (state-specific) predictors of financial hardship, such as contact from debt collection agencies. We develop a machine learning model specifically suited for highly categorical, imbalanced survey data. This work delivers a scalable, regulation-compliant blueprint for early warning systems in finance, demonstrating how FL can power socially responsible AI applications in consumer credit risk and financial inclusion. ...

October 28, 2025 · 2 min · Research Team

Aligning Language Models with Investor and Market Behavior for Financial Recommendations

Aligning Language Models with Investor and Market Behavior for Financial Recommendations ArXiv ID: 2510.15993 “View on arXiv” Authors: Fernando Spadea, Oshani Seneviratne Abstract Most financial recommendation systems often fail to account for key behavioral and regulatory factors, leading to advice that is misaligned with user preferences, difficult to interpret, or unlikely to be followed. We present FLARKO (Financial Language-model for Asset Recommendation with Knowledge-graph Optimization), a novel framework that integrates Large Language Models (LLMs), Knowledge Graphs (KGs), and Kahneman-Tversky Optimization (KTO) to generate asset recommendations that are both profitable and behaviorally aligned. FLARKO encodes users’ transaction histories and asset trends as structured KGs, providing interpretable and controllable context for the LLM. To demonstrate the adaptability of our approach, we develop and evaluate both a centralized architecture (CenFLARKO) and a federated variant (FedFLARKO). To our knowledge, this is the first demonstration of combining KTO for fine-tuning of LLMs for financial asset recommendation. We also present the first use of structured KGs to ground LLM reasoning over behavioral financial data in a federated learning (FL) setting. Evaluated on the FAR-Trans dataset, FLARKO consistently outperforms state-of-the-art recommendation baselines on behavioral alignment and joint profitability, while remaining interpretable and resource-efficient. ...

October 14, 2025 · 2 min · Research Team

A Privacy-Preserving Federated Framework with Hybrid Quantum-Enhanced Learning for Financial Fraud Detection

A Privacy-Preserving Federated Framework with Hybrid Quantum-Enhanced Learning for Financial Fraud Detection ArXiv ID: 2507.22908 “View on arXiv” Authors: Abhishek Sawaika, Swetang Krishna, Tushar Tomar, Durga Pritam Suggisetti, Aditi Lal, Tanmaya Shrivastav, Nouhaila Innan, Muhammad Shafique Abstract Rapid growth of digital transactions has led to a surge in fraudulent activities, challenging traditional detection methods in the financial sector. To tackle this problem, we introduce a specialised federated learning framework that uniquely combines a quantum-enhanced Long Short-Term Memory (LSTM) model with advanced privacy preserving techniques. By integrating quantum layers into the LSTM architecture, our approach adeptly captures complex cross-transactional patters, resulting in an approximate 5% performance improvement across key evaluation metrics compared to conventional models. Central to our framework is “FedRansel”, a novel method designed to defend against poisoning and inference attacks, thereby reducing model degradation and inference accuracy by 4-8%, compared to standard differential privacy mechanisms. This pseudo-centralised setup with a Quantum LSTM model, enhances fraud detection accuracy and reinforces the security and confidentiality of sensitive financial data. ...

July 15, 2025 · 2 min · Research Team

Financial Data Analysis with Robust Federated Logistic Regression

Financial Data Analysis with Robust Federated Logistic Regression ArXiv ID: 2504.20250 “View on arXiv” Authors: Kun Yang, Nikhil Krishnan, Sanjeev R. Kulkarni Abstract In this study, we focus on the analysis of financial data in a federated setting, wherein data is distributed across multiple clients or locations, and the raw data never leaves the local devices. Our primary focus is not only on the development of efficient learning frameworks (for protecting user data privacy) in the field of federated learning but also on the importance of designing models that are easier to interpret. In addition, we care about the robustness of the framework to outliers. To achieve these goals, we propose a robust federated logistic regression-based framework that strives to strike a balance between these goals. To verify the feasibility of our proposed framework, we carefully evaluate its performance not only on independently identically distributed (IID) data but also on non-IID data, especially in scenarios involving outliers. Extensive numerical results collected from multiple public datasets demonstrate that our proposed method can achieve comparable performance to those of classical centralized algorithms, such as Logistical Regression, Decision Tree, and K-Nearest Neighbors, in both binary and multi-class classification tasks. ...

April 28, 2025 · 2 min · Research Team

Federated Diffusion Modeling with Differential Privacy for Tabular Data Synthesis

Federated Diffusion Modeling with Differential Privacy for Tabular Data Synthesis ArXiv ID: 2412.16083 “View on arXiv” Authors: Unknown Abstract The increasing demand for privacy-preserving data analytics in various domains necessitates solutions for synthetic data generation that rigorously uphold privacy standards. We introduce the DP-FedTabDiff framework, a novel integration of Differential Privacy, Federated Learning and Denoising Diffusion Probabilistic Models designed to generate high-fidelity synthetic tabular data. This framework ensures compliance with privacy regulations while maintaining data utility. We demonstrate the effectiveness of DP-FedTabDiff on multiple real-world mixed-type tabular datasets, achieving significant improvements in privacy guarantees without compromising data quality. Our empirical evaluations reveal the optimal trade-offs between privacy budgets, client configurations, and federated optimization strategies. The results affirm the potential of DP-FedTabDiff to enable secure data sharing and analytics in highly regulated domains, paving the way for further advances in federated learning and privacy-preserving data synthesis. ...

December 20, 2024 · 2 min · Research Team

Transformers with Attentive Federated Aggregation for Time Series Stock Forecasting

Transformers with Attentive Federated Aggregation for Time Series Stock Forecasting ArXiv ID: 2402.06638 “View on arXiv” Authors: Unknown Abstract Recent innovations in transformers have shown their superior performance in natural language processing (NLP) and computer vision (CV). The ability to capture long-range dependencies and interactions in sequential data has also triggered a great interest in time series modeling, leading to the widespread use of transformers in many time series applications. However, being the most common and crucial application, the adaptation of transformers to time series forecasting has remained limited, with both promising and inconsistent results. In contrast to the challenges in NLP and CV, time series problems not only add the complexity of order or temporal dependence among input sequences but also consider trend, level, and seasonality information that much of this data is valuable for decision making. The conventional training scheme has shown deficiencies regarding model overfitting, data scarcity, and privacy issues when working with transformers for a forecasting task. In this work, we propose attentive federated transformers for time series stock forecasting with better performance while preserving the privacy of participating enterprises. Empirical results on various stock data from the Yahoo! Finance website indicate the superiority of our proposed scheme in dealing with the above challenges and data heterogeneity in federated learning. ...

January 22, 2024 · 2 min · Research Team