false

FinAI-BERT: A Transformer-Based Model for Sentence-Level Detection of AI Disclosures in Financial Reports

FinAI-BERT: A Transformer-Based Model for Sentence-Level Detection of AI Disclosures in Financial Reports ArXiv ID: 2507.01991 “View on arXiv” Authors: Muhammad Bilal Zafar Abstract The proliferation of artificial intelligence (AI) in financial services has prompted growing demand for tools that can systematically detect AI-related disclosures in corporate filings. While prior approaches often rely on keyword expansion or document-level classification, they fall short in granularity, interpretability, and robustness. This study introduces FinAI-BERT, a domain-adapted transformer-based language model designed to classify AI-related content at the sentence level within financial texts. The model was fine-tuned on a manually curated and balanced dataset of 1,586 sentences drawn from 669 annual reports of U.S. banks (2015 to 2023). FinAI-BERT achieved near-perfect classification performance (accuracy of 99.37 percent, F1 score of 0.993), outperforming traditional baselines such as Logistic Regression, Naive Bayes, Random Forest, and XGBoost. Interpretability was ensured through SHAP-based token attribution, while bias analysis and robustness checks confirmed the model’s stability across sentence lengths, adversarial inputs, and temporal samples. Theoretically, the study advances financial NLP by operationalizing fine-grained, theme-specific classification using transformer architectures. Practically, it offers a scalable, transparent solution for analysts, regulators, and scholars seeking to monitor the diffusion and framing of AI across financial institutions. ...

June 29, 2025 · 2 min · Research Team

Earnings Prediction Using Recurrent Neural Networks

Earnings Prediction Using Recurrent Neural Networks ArXiv ID: 2311.10756 “View on arXiv” Authors: Unknown Abstract Firm disclosures about future prospects are crucial for corporate valuation and compliance with global regulations, such as the EU’s MAR and the US’s SEC Rule 10b-5 and RegFD. To comply with disclosure obligations, issuers must identify nonpublic information with potential material impact on security prices as only new, relevant and unexpected information materially affects prices in efficient markets. Financial analysts, assumed to represent public knowledge on firms’ earnings prospects, face limitations in offering comprehensive coverage and unbiased estimates. This study develops a neural network to forecast future firm earnings, using four decades of financial data, addressing analysts’ coverage gaps and potentially revealing hidden insights. The model avoids selectivity and survivorship biases as it allows for missing data. Furthermore, the model is able to produce both fiscal-year-end and quarterly earnings predictions. Its performance surpasses benchmark models from the academic literature by a wide margin and outperforms analysts’ forecasts for fiscal-year-end earnings predictions. ...

November 10, 2023 · 2 min · Research Team