false

TraderTalk: An LLM Behavioural ABM applied to Simulating Human Bilateral Trading Interactions

TraderTalk: An LLM Behavioural ABM applied to Simulating Human Bilateral Trading Interactions ArXiv ID: 2410.21280 “View on arXiv” Authors: Unknown Abstract We introduce a novel hybrid approach that augments Agent-Based Models (ABMs) with behaviors generated by Large Language Models (LLMs) to simulate human trading interactions. We call our model TraderTalk. Leveraging LLMs trained on extensive human-authored text, we capture detailed and nuanced representations of bilateral conversations in financial trading. Applying this Generative Agent-Based Model (GABM) to government bond markets, we replicate trading decisions between two stylised virtual humans. Our method addresses both structural challenges, such as coordinating turn-taking between realistic LLM-based agents, and design challenges, including the interpretation of LLM outputs by the agent model. By exploring prompt design opportunistically rather than systematically, we enhance the realism of agent interactions without exhaustive overfitting or model reliance. Our approach successfully replicates trade-to-order volume ratios observed in related asset markets, demonstrating the potential of LLM-augmented ABMs in financial simulations ...

October 10, 2024 · 2 min · Research Team

PAMS: Platform for Artificial Market Simulations

PAMS: Platform for Artificial Market Simulations ArXiv ID: 2309.10729 “View on arXiv” Authors: Unknown Abstract This paper presents a new artificial market simulation platform, PAMS: Platform for Artificial Market Simulations. PAMS is developed as a Python-based simulator that is easily integrated with deep learning and enabling various simulation that requires easy users’ modification. In this paper, we demonstrate PAMS effectiveness through a study using agents predicting future prices by deep learning. ...

September 19, 2023 · 2 min · Research Team

Market-GAN: Adding Control to Financial Market Data Generation with Semantic Context

Market-GAN: Adding Control to Financial Market Data Generation with Semantic Context ArXiv ID: 2309.07708 “View on arXiv” Authors: Unknown Abstract Financial simulators play an important role in enhancing forecasting accuracy, managing risks, and fostering strategic financial decision-making. Despite the development of financial market simulation methodologies, existing frameworks often struggle with adapting to specialized simulation context. We pinpoint the challenges as i) current financial datasets do not contain context labels; ii) current techniques are not designed to generate financial data with context as control, which demands greater precision compared to other modalities; iii) the inherent difficulties in generating context-aligned, high-fidelity data given the non-stationary, noisy nature of financial data. To address these challenges, our contributions are: i) we proposed the Contextual Market Dataset with market dynamics, stock ticker, and history state as context, leveraging a market dynamics modeling method that combines linear regression and Dynamic Time Warping clustering to extract market dynamics; ii) we present Market-GAN, a novel architecture incorporating a Generative Adversarial Networks (GAN) for the controllable generation with context, an autoencoder for learning low-dimension features, and supervisors for knowledge transfer; iii) we introduce a two-stage training scheme to ensure that Market-GAN captures the intrinsic market distribution with multiple objectives. In the pertaining stage, with the use of the autoencoder and supervisors, we prepare the generator with a better initialization for the adversarial training stage. We propose a set of holistic evaluation metrics that consider alignment, fidelity, data usability on downstream tasks, and market facts. We evaluate Market-GAN with the Dow Jones Industrial Average data from 2000 to 2023 and showcase superior performance in comparison to 4 state-of-the-art time-series generative models. ...

September 14, 2023 · 3 min · Research Team