false

Investigating Conditional Restricted Boltzmann Machines in Regime Detection

Investigating Conditional Restricted Boltzmann Machines in Regime Detection ArXiv ID: 2512.21823 “View on arXiv” Authors: Siddhartha Srinivas Rentala Abstract This study investigates the efficacy of Conditional Restricted Boltzmann Machines (CRBMs) for modeling high-dimensional financial time series and detecting systemic risk regimes. We extend the classical application of static Restricted Boltzmann Machines (RBMs) by incorporating autoregressive conditioning and utilizing Persistent Contrastive Divergence (PCD) to incorporate complex temporal dependency structures. Comparing a discrete Bernoulli-Bernoulli architecture against a continuous Gaussian-Bernoulli variant across a multi-asset dataset spanning 2013-2025, we observe a dichotomy between generative fidelity and regime detection. While the Gaussian CRBM successfully preserves static asset correlations, it exhibits limitations in generating long-range volatility clustering. Thus, we analyze the free energy as a relative negative log-likelihood (surprisal) under a fixed, trained model. We demonstrate that the model’s free energy serves as a robust, regime stability metric. By decomposing the free energy into quadratic (magnitude) and structural (correlation) components, we show that the model can distinguish between pure magnitude shocks and market regimes. Our findings suggest that the CRBM offers a valuable, interpretable diagnostic tool for monitoring systemic risk, providing a supplemental metric to implied volatility metrics like the VIX. ...

December 26, 2025 · 2 min · Research Team

Fusing Narrative Semantics for Financial Volatility Forecasting

Fusing Narrative Semantics for Financial Volatility Forecasting ArXiv ID: 2510.20699 “View on arXiv” Authors: Yaxuan Kong, Yoontae Hwang, Marcus Kaiser, Chris Vryonides, Roel Oomen, Stefan Zohren Abstract We introduce M2VN: Multi-Modal Volatility Network, a novel deep learning-based framework for financial volatility forecasting that unifies time series features with unstructured news data. M2VN leverages the representational power of deep neural networks to address two key challenges in this domain: (i) aligning and fusing heterogeneous data modalities, numerical financial data and textual information, and (ii) mitigating look-ahead bias that can undermine the validity of financial models. To achieve this, M2VN combines open-source market features with news embeddings generated by Time Machine GPT, a recently introduced point-in-time LLM, ensuring temporal integrity. An auxiliary alignment loss is introduced to enhance the integration of structured and unstructured data within the deep learning architecture. Extensive experiments demonstrate that M2VN consistently outperforms existing baselines, underscoring its practical value for risk management and financial decision-making in dynamic markets. ...

October 23, 2025 · 2 min · Research Team

Quantum generative modeling for financial time series with temporal correlations

Quantum generative modeling for financial time series with temporal correlations ArXiv ID: 2507.22035 “View on arXiv” Authors: David Dechant, Eliot Schwander, Lucas van Drooge, Charles Moussa, Diego Garlaschelli, Vedran Dunjko, Jordi Tura Abstract Quantum generative adversarial networks (QGANs) have been investigated as a method for generating synthetic data with the goal of augmenting training data sets for neural networks. This is especially relevant for financial time series, since we only ever observe one realization of the process, namely the historical evolution of the market, which is further limited by data availability and the age of the market. However, for classical generative adversarial networks it has been shown that generated data may (often) not exhibit desired properties (also called stylized facts), such as matching a certain distribution or showing specific temporal correlations. Here, we investigate whether quantum correlations in quantum inspired models of QGANs can help in the generation of financial time series. We train QGANs, composed of a quantum generator and a classical discriminator, and investigate two approaches for simulating the quantum generator: a full simulation of the quantum circuits, and an approximate simulation using tensor network methods. We tested how the choice of hyperparameters, such as the circuit depth and bond dimensions, influenced the quality of the generated time series. The QGAN that we trained generate synthetic financial time series that not only match the target distribution but also exhibit the desired temporal correlations, with the quality of each property depending on the hyperparameters and simulation method. ...

July 29, 2025 · 2 min · Research Team

DELPHYNE: A Pre-Trained Model for General and Financial Time Series

DELPHYNE: A Pre-Trained Model for General and Financial Time Series ArXiv ID: 2506.06288 “View on arXiv” Authors: Xueying Ding, Aakriti Mittal, Achintya Gopal Abstract Time-series data is a vital modality within data science communities. This is particularly valuable in financial applications, where it helps in detecting patterns, understanding market behavior, and making informed decisions based on historical data. Recent advances in language modeling have led to the rise of time-series pre-trained models that are trained on vast collections of datasets and applied to diverse tasks across financial domains. However, across financial applications, existing time-series pre-trained models have not shown boosts in performance over simple finance benchmarks in both zero-shot and fine-tuning settings. This phenomenon occurs because of a i) lack of financial data within the pre-training stage, and ii) the negative transfer effect due to inherently different time-series patterns across domains. Furthermore, time-series data is continuous, noisy, and can be collected at varying frequencies and with varying lags across different variables, making this data more challenging to model than languages. To address the above problems, we introduce a Pre-trained MoDEL for FINance TimE-series (Delphyne). Delphyne achieves competitive performance to existing foundation and full-shot models with few fine-tuning steps on publicly available datasets, and also shows superior performances on various financial tasks. ...

May 12, 2025 · 2 min · Research Team

Systematic comparison of deep generative models applied to multivariate financial time series

Systematic comparison of deep generative models applied to multivariate financial time series ArXiv ID: 2412.06417 “View on arXiv” Authors: Unknown Abstract Financial time series (FTS) generation models are a core pillar to applications in finance. Risk management and portfolio optimization rely on realistic multivariate price generation models. Accordingly, there is a strong modelling literature dating back to Bachelier’s Theory of Speculation in 1901. Generating FTS using deep generative models (DGMs) is still in its infancy. In this work, we systematically compare DGMs against state-of-the-art parametric alternatives for multivariate FTS generation. We initially compare both DGMs and parametric models over increasingly complex synthetic datasets. The models are evaluated through distance measures for varying distribution moments of both the full and rolling FTS. We then apply the best performing DGM models to empirical data, demonstrating the benefit of DGMs through a implied volatility trading task. ...

December 9, 2024 · 2 min · Research Team

A Survey of Financial AI: Architectures, Advances and Open Challenges

A Survey of Financial AI: Architectures, Advances and Open Challenges ArXiv ID: 2411.12747 “View on arXiv” Authors: Unknown Abstract Financial AI empowers sophisticated approaches to financial market forecasting, portfolio optimization, and automated trading. This survey provides a systematic analysis of these developments across three primary dimensions: predictive models that capture complex market dynamics, decision-making frameworks that optimize trading and investment strategies, and knowledge augmentation systems that leverage unstructured financial information. We examine significant innovations including foundation models for financial time series, graph-based architectures for market relationship modeling, and hierarchical frameworks for portfolio optimization. Analysis reveals crucial trade-offs between model sophistication and practical constraints, particularly in high-frequency trading applications. We identify critical gaps and open challenges between theoretical advances and industrial implementation, outlining open challenges and opportunities for improving both model performance and practical applicability. ...

November 1, 2024 · 2 min · Research Team

Can GANs Learn the Stylized Facts of Financial Time Series?

Can GANs Learn the Stylized Facts of Financial Time Series? ArXiv ID: 2410.09850 “View on arXiv” Authors: Unknown Abstract In the financial sector, a sophisticated financial time series simulator is essential for evaluating financial products and investment strategies. Traditional back-testing methods have mainly relied on historical data-driven approaches or mathematical model-driven approaches, such as various stochastic processes. However, in the current era of AI, data-driven approaches, where models learn the intrinsic characteristics of data directly, have emerged as promising techniques. Generative Adversarial Networks (GANs) have surfaced as promising generative models, capturing data distributions through adversarial learning. Financial time series, characterized ‘stylized facts’ such as random walks, mean-reverting patterns, unexpected jumps, and time-varying volatility, present significant challenges for deep neural networks to learn their intrinsic characteristics. This study examines the ability of GANs to learn diverse and complex temporal patterns (i.e., stylized facts) of both univariate and multivariate financial time series. Our extensive experiments revealed that GANs can capture various stylized facts of financial time series, but their performance varies significantly depending on the choice of generator architecture. This suggests that naively applying GANs might not effectively capture the intricate characteristics inherent in financial time series, highlighting the importance of carefully considering and validating the modeling choices. ...

October 13, 2024 · 2 min · Research Team

Transfer learning for financial data predictions: a systematic review

Transfer learning for financial data predictions: a systematic review ArXiv ID: 2409.17183 “View on arXiv” Authors: Unknown Abstract Literature highlighted that financial time series data pose significant challenges for accurate stock price prediction, because these data are characterized by noise and susceptibility to news; traditional statistical methodologies made assumptions, such as linearity and normality, which are not suitable for the non-linear nature of financial time series; on the other hand, machine learning methodologies are able to capture non linear relationship in the data. To date, neural network is considered the main machine learning tool for the financial prices prediction. Transfer Learning, as a method aimed at transferring knowledge from source tasks to target tasks, can represent a very useful methodological tool for getting better financial prediction capability. Current reviews on the above body of knowledge are mainly focused on neural network architectures, for financial prediction, with very little emphasis on the transfer learning methodology; thus, this paper is aimed at going deeper on this topic by developing a systematic review with respect to application of Transfer Learning for financial market predictions and to challenges/potential future directions of the transfer learning methodologies for stock market predictions. ...

September 24, 2024 · 2 min · Research Team

Strong denoising of financial time-series

Strong denoising of financial time-series ArXiv ID: 2408.05690 “View on arXiv” Authors: Unknown Abstract In this paper we introduce a method for significantly improving the signal to noise ratio in financial data. The approach relies on combining a target variable with different context variables and use auto-encoders (AEs) to learn reconstructions of the combined inputs. The objective is to obtain agreement among pairs of AEs which are trained on related but different inputs and for which they are forced to find common ground. The training process is set up as a “conversation” where the models take turns at producing a prediction (speaking) and reconciling own predictions with the output of the other AE (listening), until an agreement is reached. This leads to a new way of constraining the complexity of the data representation generated by the AE. Unlike standard regularization whose strength needs to be decided by the designer, the proposed mutual regularization uses the partner network to detect and amend the lack of generality of the learned representation of the data. The integration of alternative perspectives enhances the de-noising capacity of a single AE and allows us to discover new regularities in financial time-series which can be converted into profitable trading strategies. ...

August 11, 2024 · 2 min · Research Team

Temporal Representation Learning for Stock Similarities and Its Applications in Investment Management

Temporal Representation Learning for Stock Similarities and Its Applications in Investment Management ArXiv ID: 2407.13751 “View on arXiv” Authors: Unknown Abstract In the era of rapid globalization and digitalization, accurate identification of similar stocks has become increasingly challenging due to the non-stationary nature of financial markets and the ambiguity in conventional regional and sector classifications. To address these challenges, we examine SimStock, a novel temporal self-supervised learning framework that combines techniques from self-supervised learning (SSL) and temporal domain generalization to learn robust and informative representations of financial time series data. The primary focus of our study is to understand the similarities between stocks from a broader perspective, considering the complex dynamics of the global financial landscape. We conduct extensive experiments on four real-world datasets with thousands of stocks and demonstrate the effectiveness of SimStock in finding similar stocks, outperforming existing methods. The practical utility of SimStock is showcased through its application to various investment strategies, such as pairs trading, index tracking, and portfolio optimization, where it leads to superior performance compared to conventional methods. Our findings empirically examine the potential of data-driven approach to enhance investment decision-making and risk management practices by leveraging the power of temporal self-supervised learning in the face of the ever-changing global financial landscape. ...

July 18, 2024 · 2 min · Research Team