false

A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist

A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist ArXiv ID: 2402.18485 “View on arXiv” Authors: Unknown Abstract Financial trading is a crucial component of the markets, informed by a multimodal information landscape encompassing news, prices, and Kline charts, and encompasses diverse tasks such as quantitative trading and high-frequency trading with various assets. While advanced AI techniques like deep learning and reinforcement learning are extensively utilized in finance, their application in financial trading tasks often faces challenges due to inadequate handling of multimodal data and limited generalizability across various tasks. To address these challenges, we present FinAgent, a multimodal foundational agent with tool augmentation for financial trading. FinAgent’s market intelligence module processes a diverse range of data-numerical, textual, and visual-to accurately analyze the financial market. Its unique dual-level reflection module not only enables rapid adaptation to market dynamics but also incorporates a diversified memory retrieval system, enhancing the agent’s ability to learn from historical data and improve decision-making processes. The agent’s emphasis on reasoning for actions fosters trust in its financial decisions. Moreover, FinAgent integrates established trading strategies and expert insights, ensuring that its trading approaches are both data-driven and rooted in sound financial principles. With comprehensive experiments on 6 financial datasets, including stocks and Crypto, FinAgent significantly outperforms 9 state-of-the-art baselines in terms of 6 financial metrics with over 36% average improvement on profit. Specifically, a 92.27% return (a 84.39% relative improvement) is achieved on one dataset. Notably, FinAgent is the first advanced multimodal foundation agent designed for financial trading tasks. ...

February 28, 2024 · 2 min · Research Team

Leveraging Deep Learning and Online Source Sentiment for Financial Portfolio Management

Leveraging Deep Learning and Online Source Sentiment for Financial Portfolio Management ArXiv ID: 2309.16679 “View on arXiv” Authors: Unknown Abstract Financial portfolio management describes the task of distributing funds and conducting trading operations on a set of financial assets, such as stocks, index funds, foreign exchange or cryptocurrencies, aiming to maximize the profit while minimizing the loss incurred by said operations. Deep Learning (DL) methods have been consistently excelling at various tasks and automated financial trading is one of the most complex one of those. This paper aims to provide insight into various DL methods for financial trading, under both the supervised and reinforcement learning schemes. At the same time, taking into consideration sentiment information regarding the traded assets, we discuss and demonstrate their usefulness through corresponding research studies. Finally, we discuss commonly found problems in training such financial agents and equip the reader with the necessary knowledge to avoid these problems and apply the discussed methods in practice. ...

July 23, 2023 · 2 min · Research Team