false

Volatility Calibration via Automatic Local Regression

Volatility Calibration via Automatic Local Regression ArXiv ID: 2509.16334 “View on arXiv” Authors: Ruozhong Yang, Hao Qin, Charlie Che, Liming Feng Abstract Managing exotic derivatives requires accurate mark-to-market pricing and stable Greeks for reliable hedging. The Local Volatility (LV) model distinguishes itself from other pricing models by its ability to match observable market prices across all strikes and maturities with high accuracy. However, LV calibration is fundamentally ill-posed: finite market observables must determine a continuously-defined surface with infinite local volatility parameters. This ill-posed nature often causes spiky LV surfaces that are particularly problematic for finite-difference-based valuation, and induces high-frequency oscillations in solutions, thus leading to unstable Greeks. To address this challenge, we propose a pre-calibration smoothing method that can be integrated seamlessly into any LV calibration workflow. Our method pre-processes market observables using local regression that automatically minimizes asymptotic conditional mean squared error to generate denoised inputs for subsequent LV calibration. Numerical experiments demonstrate that the proposed pre-calibration smoothing yields significantly smoother LV surfaces and greatly improves Greek stability for exotic options with negligible additional computational cost, while preserving the LV model’s ability to fit market observables with high fidelity. ...

September 19, 2025 · 2 min · Research Team

Mathematical Modeling of Option Pricing with an Extended Black-Scholes Framework

Mathematical Modeling of Option Pricing with an Extended Black-Scholes Framework ArXiv ID: 2504.03175 “View on arXiv” Authors: Unknown Abstract This study investigates enhancing option pricing by extending the Black-Scholes model to include stochastic volatility and interest rate variability within the Partial Differential Equation (PDE). The PDE is solved using the finite difference method. The extended Black-Scholes model and a machine learning-based LSTM model are developed and evaluated for pricing Google stock options. Both models were backtested using historical market data. While the LSTM model exhibited higher predictive accuracy, the finite difference method demonstrated superior computational efficiency. This work provides insights into model performance under varying market conditions and emphasizes the potential of hybrid approaches for robust financial modeling. ...

April 4, 2025 · 2 min · Research Team

Instabilities of explicit finite difference schemes with ghost points on the diffusion equation

Instabilities of explicit finite difference schemes with ghost points on the diffusion equation ArXiv ID: 2308.04629 “View on arXiv” Authors: Unknown Abstract Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models. ...

August 8, 2023 · 1 min · Research Team