false

Optimizing Fintech Marketing: A Comparative Study of Logistic Regression and XGBoost

Optimizing Fintech Marketing: A Comparative Study of Logistic Regression and XGBoost ArXiv ID: 2412.16333 “View on arXiv” Authors: Unknown Abstract As several studies have shown, predicting credit risk is still a major concern for the financial services industry and is receiving a lot of scholarly interest. This area of study is crucial because it aids financial organizations in determining the probability that borrowers would default, which has a direct bearing on lending choices and risk management tactics. Despite the progress made in this domain, there is still a substantial knowledge gap concerning consumer actions that take place prior to the filing of credit card applications. The objective of this study is to predict customer responses to mail campaigns and assess the likelihood of default among those who engage. This research employs advanced machine learning techniques, specifically logistic regression and XGBoost, to analyze consumer behavior and predict responses to direct mail campaigns. By integrating different data preprocessing strategies, including imputation and binning, we enhance the robustness and accuracy of our predictive models. The results indicate that XGBoost consistently outperforms logistic regression across various metrics, particularly in scenarios using categorical binning and custom imputation. These findings suggest that XGBoost is particularly effective in handling complex data structures and provides a strong predictive capability in assessing credit risk. ...

December 20, 2024 · 2 min · Research Team

Fast and Stable Credit Gamma of CVA

Fast and Stable Credit Gamma of CVA ArXiv ID: 2311.11672 “View on arXiv” Authors: Unknown Abstract Credit Valuation Adjustment is a balance sheet item which is nowadays subject to active risk management by specialized traders. However, one of the most important risk factors, which is the vector of default intensities of the counterparty, affects in a non-differentiable way the most general Monte Carlo estimator of the adjustment, through simulation of default times. Thus the computation of first and second order (pure and mixed) sensitivities involving these inputs cannot rely on direct path-wise differentiation, while any approach involving finite differences shows very high statistical noise. We present ad hoc analytical estimators which overcome these issues while offering very low runtime overheads over the baseline computation of the price adjustment. We also discuss the conversion of the so-obtained sensitivities to model parameters (e.g. default intensities) into sensitivities to market quotes (e.g. Credit Default Swap spreads). ...

November 20, 2023 · 2 min · Research Team

DeRisk: An Effective Deep Learning Framework for Credit Risk Prediction over Real-World Financial Data

DeRisk: An Effective Deep Learning Framework for Credit Risk Prediction over Real-World Financial Data ArXiv ID: 2308.03704 “View on arXiv” Authors: Unknown Abstract Despite the tremendous advances achieved over the past years by deep learning techniques, the latest risk prediction models for industrial applications still rely on highly handtuned stage-wised statistical learning tools, such as gradient boosting and random forest methods. Different from images or languages, real-world financial data are high-dimensional, sparse, noisy and extremely imbalanced, which makes deep neural network models particularly challenging to train and fragile in practice. In this work, we propose DeRisk, an effective deep learning risk prediction framework for credit risk prediction on real-world financial data. DeRisk is the first deep risk prediction model that outperforms statistical learning approaches deployed in our company’s production system. We also perform extensive ablation studies on our method to present the most critical factors for the empirical success of DeRisk. ...

August 7, 2023 · 2 min · Research Team