false

A New Approach for the Continuous Time Kyle-Back Strategic Insider Equilibrium Problem

A New Approach for the Continuous Time Kyle-Back Strategic Insider Equilibrium Problem ArXiv ID: 2506.12281 “View on arXiv” Authors: Bixing Qiao, Jianfeng Zhang Abstract This paper considers a continuous time Kyle-Back model which is a game problem between an insider and a market marker. The existing literature typically focuses on the existence of equilibrium by using the PDE approach, which requires certain Markovian structure and the equilibrium is in the bridge form. We shall provide a new approach which is used widely for stochastic controls and stochastic differential games. We characterize all equilibria through a coupled system of forward backward SDEs, where the forward one is the conditional law of the inside information and the backward one is the insider’s optimal value. In particular, when the time duration is small, we show that the FBSDE is wellposed and thus the game has a unique equilibrium. This is the first uniqueness result in the literature, without restricting the equilibria to certain special structure. Moreover, this unique equilibrium may not be Markovian, indicating that the PDE approach cannot work in this case. We next study the set value of the game, which roughly speaking is the set of insider’s values over all equilibria and thus is by nature unique. We show that, although the bridge type of equilibria in the literature does not satisfy the required integrability for our equilibria, its truncation serves as a desired approximate equilibrium and its value belongs to our set value. Finally, we characterize our set value through a level set of certain standard HJB equation. ...

June 14, 2025 · 2 min · Research Team

Broker-Trader Partial Information Nash-Equilibria

Broker-Trader Partial Information Nash-Equilibria ArXiv ID: 2412.17712 “View on arXiv” Authors: Unknown Abstract We study partial information Nash equilibrium between a broker and an informed trader. In this setting, the informed trader, who possesses knowledge of a trading signal, trades multiple assets with the broker in a dealer market. Simultaneously, the broker offloads these assets in a lit exchange where their actions impact the asset prices. The broker, however, only observes aggregate prices and cannot distinguish between underlying trends and volatility. Both the broker and the informed trader aim to maximize their penalized expected wealth. Using convex analysis, we characterize the Nash equilibrium and demonstrate its existence and uniqueness. Furthermore, we establish that this equilibrium corresponds to the solution of a nonstandard system of forward-backward stochastic differential equations (FBSDEs) that involves the two differing filtrations. For short enough time horizons, we prove that a unique solution of this system exists. Finally, under quite general assumptions, we show that the solution to the FBSDE system admits a polynomial approximation in the strength of the transient impact to arbitrary order, and prove that the error is controlled. ...

December 23, 2024 · 2 min · Research Team

Nash Equilibrium between Brokers and Traders

Nash Equilibrium between Brokers and Traders ArXiv ID: 2407.10561 “View on arXiv” Authors: Unknown Abstract We study the perfect information Nash equilibrium between a broker and her clients – an informed trader and an uniformed trader. In our model, the broker trades in the lit exchange where trades have instantaneous and transient price impact with exponential resilience, while both clients trade with the broker. The informed trader and the broker maximise expected wealth subject to inventory penalties, while the uninformed trader is not strategic and sends the broker random buy and sell orders. We characterise the Nash equilibrium of the trading strategies with the solution to a coupled system of forward-backward stochastic differential equations (FBSDEs). We solve this system explicitly and study the effect of information, profitability, and inventory control in the trading strategies of the broker and the informed trader. ...

July 15, 2024 · 2 min · Research Team