false

Dynamics of Liquidity Surfaces in Uniswap v3

Dynamics of Liquidity Surfaces in Uniswap v3 ArXiv ID: 2509.05013 “View on arXiv” Authors: Jimmy Risk, Shen-Ning Tung, Tai-Ho Wang Abstract This paper presents a comprehensive study on the empirical dynamics of Uniswap v3 liquidity, which we model as a time-tick surface, $L_t(x)$. Using a combination of functional principal component analysis (FPCA) and dynamic factor methods, we analyze three distinct pools over multiple sample periods. Our findings offer three main contributions: a statistical characterization of automated market maker liquidity, an interpretable and portable basis for dimension reduction, and a robust analysis of liquidity dynamics using rolling window metrics. For the 5 bps pools, the leading empirical eigenfunctions explain the majority of cross-tick variation and remain stable, aligning closely with a low-order Legendre polynomial basis. This alignment provides a parsimonious and interpretable structure, similar to the dynamic Nelson-Siegel method for yield curves. The factor coefficients exhibit a time series structure well-captured by AR(1) models with clear GARCH-type heteroskedasticity and heavy-tailed innovations. ...

September 5, 2025 · 2 min · Research Team

Noise reduction for functional time series

Noise reduction for functional time series ArXiv ID: 2307.02154 “View on arXiv” Authors: Unknown Abstract A novel method for noise reduction in the setting of curve time series with error contamination is proposed, based on extending the framework of functional principal component analysis (FPCA). We employ the underlying, finite-dimensional dynamics of the functional time series to separate the serially dependent dynamical part of the observed curves from the noise. Upon identifying the subspaces of the signal and idiosyncratic components, we construct a projection of the observed curve time series along the noise subspace, resulting in an estimate of the underlying denoised curves. This projection is optimal in the sense that it minimizes the mean integrated squared error. By applying our method to similated and real data, we show the denoising estimator is consistent and outperforms existing denoising techniques. Furthermore, we show it can be used as a pre-processing step to improve forecasting. ...

July 5, 2023 · 2 min · Research Team