false

A Line Graph-Based Framework for Identifying Optimal Routing Paths in Decentralized Exchanges

A Line Graph-Based Framework for Identifying Optimal Routing Paths in Decentralized Exchanges ArXiv ID: 2504.15809 “View on arXiv” Authors: Unknown Abstract Decentralized exchanges, such as those employing constant product market makers (CPMMs) like Uniswap V2, play a crucial role in the blockchain ecosystem by enabling peer-to-peer token swaps without intermediaries. Despite the increasing volume of transactions, there remains limited research on identifying optimal trading paths across multiple DEXs. This paper presents a novel line-graph-based algorithm (LG) designed to efficiently discover profitable trading routes within DEX environments. We benchmark LG against the widely adopted Depth-First Search (DFS) algorithm under a linear routing scenario, encompassing platforms such as Uniswap, SushiSwap, and PancakeSwap. Experimental results demonstrate that LG consistently identifies trading paths that are as profitable as, or more profitable than, those found by DFS, while incurring comparable gas costs. Evaluations on Uniswap V2 token graphs across two temporal snapshots further validate LG’s performance. Although LG exhibits exponential runtime growth with respect to graph size in empirical tests, it remains viable for practical, real-world use cases. Our findings underscore the potential of the LG algorithm for industrial adoption, offering tangible benefits to traders and market participants in the DeFi space. ...

April 22, 2025 · 2 min · Research Team

Layer 2 be or Layer not 2 be: Scaling on Uniswap v3

Layer 2 be or Layer not 2 be: Scaling on Uniswap v3 ArXiv ID: 2403.09494 “View on arXiv” Authors: Unknown Abstract This paper studies the market structure impact of cheaper and faster chains on the Uniswap v3 Protocol. The Uniswap Protocol is the largest decentralized application on Ethereum by both gas and blockspace used, and user behaviors of the protocol are very sensitive to fluctuations in gas prices and market structure due to the economic factors of the Protocol. We focus on the chains where Uniswap v3 has the most activity, giving us the best comparison to Ethereum mainnet. Because of cheaper gas and lower block times, we find evidence that the majority of swaps get better gas-adjusted execution on these chains, liquidity providers are more capital efficient, and liquidity providers have increased fee returns from more arbitrage. We also present evidence that two second block times may be too long for optimal liquidity provider returns, compared to first come, first served. We argue that many of the current drawbacks with AMMs may be due to chain dynamics and are vastly improved with cheaper and faster transactions ...

March 14, 2024 · 2 min · Research Team