false

Multimodal Insights into Credit Risk Modelling: Integrating Climate and Text Data for Default Prediction

Multimodal Insights into Credit Risk Modelling: Integrating Climate and Text Data for Default Prediction ArXiv ID: 2601.00478 “View on arXiv” Authors: Zongxiao Wu, Ran Liu, Jiang Dai, Dan Luo Abstract Credit risk assessment increasingly relies on diverse sources of information beyond traditional structured financial data, particularly for micro and small enterprises (mSEs) with limited financial histories. This study proposes a multimodal framework that integrates structured credit variables, climate panel data, and unstructured textual narratives within a unified learning architecture. Specifically, we use long short-term memory (LSTM), the gated recurrent unit (GRU), and transformer models to analyse the interplay between these data modalities. The empirical results demonstrate that unimodal models based on climate or text data outperform those relying solely on structured data, while the integration of multiple data modalities yields significant improvements in credit default prediction. Using SHAP-based explainability methods, we find that physical climate risks play an important role in default prediction, with water-logging by rain emerging as the most influential factor. Overall, this study demonstrates the potential of multimodal approaches in AI-enabled decision-making, which provides robust tools for credit risk assessment while contributing to the broader integration of environmental and textual insights into predictive analytics. ...

January 1, 2026 · 2 min · Research Team

Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting

Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting ArXiv ID: 2310.01063 “View on arXiv” Authors: Unknown Abstract In this paper, we develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks. For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH. Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices, with the three assets representing quite distinct volatility dynamics. As the main volatility estimator, also underlying the target function of our hybrid models, we use the price-range-based Garman-Klass estimator, modified to incorporate the opening and closing prices. Volatility forecasts resulting from the hybrid models are employed to evaluate the assets’ risk using the Value-at-Risk (VaR) and Expected Shortfall (ES) at two different tolerance levels of 5% and 1%. Gains from combining the GARCH and GRU approaches are discussed in the contexts of both the volatility and risk forecasts. In general, it can be concluded that the hybrid solutions produce more accurate point volatility forecasts, although it does not necessarily translate into superior VaR and ES forecasts. ...

October 2, 2023 · 2 min · Research Team