false

Trading Volume Maximization with Online Learning

Trading Volume Maximization with Online Learning ArXiv ID: 2405.13102 “View on arXiv” Authors: Unknown Abstract We explore brokerage between traders in an online learning framework. At any round $t$, two traders meet to exchange an asset, provided the exchange is mutually beneficial. The broker proposes a trading price, and each trader tries to sell their asset or buy the asset from the other party, depending on whether the price is higher or lower than their private valuations. A trade happens if one trader is willing to sell and the other is willing to buy at the proposed price. Previous work provided guidance to a broker aiming at enhancing traders’ total earnings by maximizing the gain from trade, defined as the sum of the traders’ net utilities after each interaction. In contrast, we investigate how the broker should behave to maximize the trading volume, i.e., the total number of trades. We model the traders’ valuations as an i.i.d. process with an unknown distribution. If the traders’ valuations are revealed after each interaction (full-feedback), and the traders’ valuations cumulative distribution function (cdf) is continuous, we provide an algorithm achieving logarithmic regret and show its optimality up to constant factors. If only their willingness to sell or buy at the proposed price is revealed after each interaction ($2$-bit feedback), we provide an algorithm achieving poly-logarithmic regret when the traders’ valuations cdf is Lipschitz and show that this rate is near-optimal. We complement our results by analyzing the implications of dropping the regularity assumptions on the unknown traders’ valuations cdf. If we drop the continuous cdf assumption, the regret rate degrades to $Θ(\sqrt{“T”})$ in the full-feedback case, where $T$ is the time horizon. If we drop the Lipschitz cdf assumption, learning becomes impossible in the $2$-bit feedback case. ...

May 21, 2024 · 3 min · Research Team

Exploiting Distributional Value Functions for Financial Market Valuation, Enhanced Feature Creation and Improvement of Trading Algorithms

Exploiting Distributional Value Functions for Financial Market Valuation, Enhanced Feature Creation and Improvement of Trading Algorithms ArXiv ID: 2405.11686 “View on arXiv” Authors: Unknown Abstract While research of reinforcement learning applied to financial markets predominantly concentrates on finding optimal behaviours, it is worth to realize that the reinforcement learning returns $G_t$ and state value functions themselves are of interest and play a pivotal role in the evaluation of assets. Instead of focussing on the more complex task of finding optimal decision rules, this paper studies and applies the power of distributional state value functions in the context of financial market valuation and machine learning based trading algorithms. Accurate and trustworthy estimates of the distributions of $G_t$ provide a competitive edge leading to better informed decisions and more optimal behaviour. Herein, ideas from predictive knowledge and deep reinforcement learning are combined to introduce a novel family of models called CDG-Model, resulting in a highly flexible framework and intuitive approach with minimal assumptions regarding underlying distributions. The models allow seamless integration of typical financial modelling pitfalls like transaction costs, slippage and other possible costs or benefits into the model calculation. They can be applied to any kind of trading strategy or asset class. The frameworks introduced provide concrete business value through their potential in market valuation of single assets and portfolios, in the comparison of strategies as well as in the improvement of market timing. They can positively impact the performance and enhance the learning process of existing or new trading algorithms. They are of interest from a scientific point-of-view and open up multiple areas of future research. Initial implementations and tests were performed on real market data. While the results are promising, applying a robust statistical framework to evaluate the models in general remains a challenge and further investigations are needed. ...

May 19, 2024 · 3 min · Research Team