false

Decoding OTC Government Bond Market Liquidity: An ABM Model for Market Dynamics

Decoding OTC Government Bond Market Liquidity: An ABM Model for Market Dynamics ArXiv ID: 2501.16331 “View on arXiv” Authors: Unknown Abstract The over-the-counter (OTC) government bond markets are characterised by their bilateral trading structures, which pose unique challenges to understanding and ensuring market stability and liquidity. In this paper, we develop a bespoke ABM that simulates market-maker interactions within a stylised government bond market. The model focuses on the dynamics of liquidity and stability in the secondary trading of government bonds, particularly in concentrated markets like those found in Australia and the UK. Through this simulation, we test key hypotheses around improving market stability, focusing on the effects of agent diversity, business costs, and client base size. We demonstrate that greater agent diversity enhances market liquidity and that reducing the costs of market-making can improve overall market stability. The model offers insights into computational finance by simulating trading without price transparency, highlighting how micro-structural elements can affect macro-level market outcomes. This research contributes to the evolving field of computational finance by employing computational intelligence techniques to better understand the fundamental mechanics of government bond markets, providing actionable insights for both academics and practitioners. ...

December 15, 2024 · 2 min · Research Team

TraderTalk: An LLM Behavioural ABM applied to Simulating Human Bilateral Trading Interactions

TraderTalk: An LLM Behavioural ABM applied to Simulating Human Bilateral Trading Interactions ArXiv ID: 2410.21280 “View on arXiv” Authors: Unknown Abstract We introduce a novel hybrid approach that augments Agent-Based Models (ABMs) with behaviors generated by Large Language Models (LLMs) to simulate human trading interactions. We call our model TraderTalk. Leveraging LLMs trained on extensive human-authored text, we capture detailed and nuanced representations of bilateral conversations in financial trading. Applying this Generative Agent-Based Model (GABM) to government bond markets, we replicate trading decisions between two stylised virtual humans. Our method addresses both structural challenges, such as coordinating turn-taking between realistic LLM-based agents, and design challenges, including the interpretation of LLM outputs by the agent model. By exploring prompt design opportunistically rather than systematically, we enhance the realism of agent interactions without exhaustive overfitting or model reliance. Our approach successfully replicates trade-to-order volume ratios observed in related asset markets, demonstrating the potential of LLM-augmented ABMs in financial simulations ...

October 10, 2024 · 2 min · Research Team

Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study

Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study ArXiv ID: 2405.02849 “View on arXiv” Authors: Unknown Abstract Exploring complex adaptive financial trading environments through multi-agent based simulation methods presents an innovative approach within the realm of quantitative finance. Despite the dominance of multi-agent reinforcement learning approaches in financial markets with observable data, there exists a set of systematically significant financial markets that pose challenges due to their partial or obscured data availability. We, therefore, devise a multi-agent simulation approach employing small-scale meta-heuristic methods. This approach aims to represent the opaque bilateral market for Australian government bond trading, capturing the bilateral nature of bank-to-bank trading, also referred to as “over-the-counter” (OTC) trading, and commonly occurring between “market makers”. The uniqueness of the bilateral market, characterized by negotiated transactions and a limited number of agents, yields valuable insights for agent-based modelling and quantitative finance. The inherent rigidity of this market structure, which is at odds with the global proliferation of multilateral platforms and the decentralization of finance, underscores the unique insights offered by our agent-based model. We explore the implications of market rigidity on market structure and consider the element of stability, in market design. This extends the ongoing discourse on complex financial trading environments, providing an enhanced understanding of their dynamics and implications. ...

May 5, 2024 · 2 min · Research Team