false

Non-Convex Portfolio Optimization via Energy-Based Models: A Comparative Analysis Using the Thermodynamic HypergRaphical Model Library (THRML) for Index Tracking

Non-Convex Portfolio Optimization via Energy-Based Models: A Comparative Analysis Using the Thermodynamic HypergRaphical Model Library (THRML) for Index Tracking ArXiv ID: 2601.07792 “View on arXiv” Authors: Javier Mancilla, Theodoros D. Bouloumis, Frederic Goguikian Abstract Portfolio optimization under cardinality constraints transforms the classical Markowitz mean-variance problem from a convex quadratic problem into an NP-hard combinatorial optimization problem. This paper introduces a novel approach using THRML (Thermodynamic HypergRaphical Model Library), a JAX-based library for building and sampling probabilistic graphical models that reformulates index tracking as probabilistic inference on an Ising Hamiltonian. Unlike traditional methods that seek a single optimal solution, THRML samples from the Boltzmann distribution of high-quality portfolios using GPU-accelerated block Gibbs sampling, providing natural regularization against overfitting. We implement three key innovations: (1) dynamic coupling strength that scales inversely with market volatility (VIX), adapting diversification pressure to market regimes; (2) rebalanced bias weights prioritizing tracking quality over momentum for index replication; and (3) sector-aware post-processing ensuring institutional-grade diversification. Backtesting on a 100-stock S and P 500 universe from 2023 to 2025 demonstrates that THRML achieves 4.31 percent annualized tracking error versus 5.66 to 6.30 percent for baselines, while simultaneously generating 128.63 percent total return against the index total return of 79.61 percent. The Diebold-Mariano test confirms statistical significance with p less than 0.0001 across all comparisons. These results position energy-based models as a promising paradigm for portfolio construction, bridging statistical mechanics and quantitative finance. ...

January 12, 2026 · 2 min · Research Team

JAX-LOB: A GPU-Accelerated limit order book simulator to unlock large scale reinforcement learning for trading

JAX-LOB: A GPU-Accelerated limit order book simulator to unlock large scale reinforcement learning for trading ArXiv ID: 2308.13289 “View on arXiv” Authors: Unknown Abstract Financial exchanges across the world use limit order books (LOBs) to process orders and match trades. For research purposes it is important to have large scale efficient simulators of LOB dynamics. LOB simulators have previously been implemented in the context of agent-based models (ABMs), reinforcement learning (RL) environments, and generative models, processing order flows from historical data sets and hand-crafted agents alike. For many applications, there is a requirement for processing multiple books, either for the calibration of ABMs or for the training of RL agents. We showcase the first GPU-enabled LOB simulator designed to process thousands of books in parallel, with a notably reduced per-message processing time. The implementation of our simulator - JAX-LOB - is based on design choices that aim to best exploit the powers of JAX without compromising on the realism of LOB-related mechanisms. We integrate JAX-LOB with other JAX packages, to provide an example of how one may address an optimal execution problem with reinforcement learning, and to share some preliminary results from end-to-end RL training on GPUs. ...

August 25, 2023 · 2 min · Research Team