false

A Full-History Network Dataset for BTC Asset Decentralization Profiling

A Full-History Network Dataset for BTC Asset Decentralization Profiling ArXiv ID: 2411.13603 “View on arXiv” Authors: Unknown Abstract Since its advent in 2009, Bitcoin (BTC) has garnered increasing attention from both academia and industry. However, due to the massive transaction volume, no systematic study has quantitatively measured the asset decentralization degree specifically from a network perspective. In this paper, by conducting a thorough analysis of the BTC transaction network, we first address the significant gap in the availability of full-history BTC graph and network property dataset, which spans over 15 years from the genesis block (1st March, 2009) to the 845651-th block (29, May 2024). We then present the first systematic investigation to profile BTC’s asset decentralization and design several decentralization degrees for quantification. Through extensive experiments, we emphasize the significant role of network properties and our network-based decentralization degree in enhancing Bitcoin analysis. Our findings demonstrate the importance of our comprehensive dataset and analysis in advancing research on Bitcoin’s transaction dynamics and decentralization, providing valuable insights into the network’s structure and its implications. ...

November 19, 2024 · 2 min · Research Team

Narratives from GPT-derived Networks of News, and a link to Financial Markets Dislocations

Narratives from GPT-derived Networks of News, and a link to Financial Markets Dislocations ArXiv ID: 2311.14419 “View on arXiv” Authors: Unknown Abstract Starting from a corpus of economic articles from The Wall Street Journal, we present a novel systematic way to analyse news content that evolves over time. We leverage on state-of-the-art natural language processing techniques (i.e. GPT3.5) to extract the most important entities of each article available, and aggregate co-occurrence of entities in a related graph at the weekly level. Network analysis techniques and fuzzy community detection are tested on the proposed set of graphs, and a framework is introduced that allows systematic but interpretable detection of topics and narratives. In parallel, we propose to consider the sentiment around main entities of an article as a more accurate proxy for the overall sentiment of such piece of text, and describe a case-study to motivate this choice. Finally, we design features that characterise the type and structure of news within each week, and map them to moments of financial markets dislocations. The latter are identified as dates with unusually high volatility across asset classes, and we find quantitative evidence that they relate to instances of high entropy in the high-dimensional space of interconnected news. This result further motivates the pursued efforts to provide a novel framework for the systematic analysis of narratives within news. ...

November 24, 2023 · 2 min · Research Team

Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale Transactions

Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale Transactions ArXiv ID: 2309.13662 “View on arXiv” Authors: Unknown Abstract Money launderers exploit the weaknesses in detection systems by purposefully placing their ill-gotten money into multiple accounts, at different banks. That money is then layered and moved around among mule accounts to obscure the origin and the flow of transactions. Consequently, the money is integrated into the financial system without raising suspicion. Path finding algorithms that aim at tracking suspicious flows of money usually struggle with scale and complexity. Existing community detection techniques also fail to properly capture the time-dependent relationships. This is particularly evident when performing analytics over massive transaction graphs. We propose a framework (called FaSTMAN), adapted for domain-specific constraints, to efficiently construct a temporal graph of sequential transactions. The framework includes a weighting method, using 2nd order graph representation, to quantify the significance of the edges. This method enables us to distribute complex queries on smaller and densely connected networks of flows. Finally, based on those queries, we can effectively identify networks of suspicious flows. We extensively evaluate the scalability and the effectiveness of our framework against two state-of-the-art solutions for detecting suspicious flows of transactions. For a dataset of over 1 Billion transactions from multiple large European banks, the results show a clear superiority of our framework both in efficiency and usefulness. ...

September 24, 2023 · 2 min · Research Team