false

Graph Learning for Foreign Exchange Rate Prediction and Statistical Arbitrage

Graph Learning for Foreign Exchange Rate Prediction and Statistical Arbitrage ArXiv ID: 2508.14784 “View on arXiv” Authors: Yoonsik Hong, Diego Klabjan Abstract We propose a two-step graph learning approach for foreign exchange statistical arbitrages (FXSAs), addressing two key gaps in prior studies: the absence of graph-learning methods for foreign exchange rate prediction (FXRP) that leverage multi-currency and currency-interest rate relationships, and the disregard of the time lag between price observation and trade execution. In the first step, to capture complex multi-currency and currency-interest rate relationships, we formulate FXRP as an edge-level regression problem on a discrete-time spatiotemporal graph. This graph consists of currencies as nodes and exchanges as edges, with interest rates and foreign exchange rates serving as node and edge features, respectively. We then introduce a graph-learning method that leverages the spatiotemporal graph to address the FXRP problem. In the second step, we present a stochastic optimization problem to exploit FXSAs while accounting for the observation-execution time lag. To address this problem, we propose a graph-learning method that enforces constraints through projection and ReLU, maximizes risk-adjusted return by leveraging a graph with exchanges as nodes and influence relationships as edges, and utilizes the predictions from the FXRP method for the constraint parameters and node features. Moreover, we prove that our FXSA method satisfies empirical arbitrage constraints. The experimental results demonstrate that our FXRP method yields statistically significant improvements in mean squared error, and that the FXSA method achieves a 61.89% higher information ratio and a 45.51% higher Sortino ratio than a benchmark. Our approach provides a novel perspective on FXRP and FXSA within the context of graph learning. ...

August 20, 2025 · 2 min · Research Team

DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models

DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models ArXiv ID: 2403.14063 “View on arXiv” Authors: Unknown Abstract In this work, we propose an approach to generalize denoising diffusion probabilistic models for stock market predictions and portfolio management. Present works have demonstrated the efficacy of modeling interstock relations for market time-series forecasting and utilized Graph-based learning models for value prediction and portfolio management. Though convincing, these deterministic approaches still fall short of handling uncertainties i.e., due to the low signal-to-noise ratio of the financial data, it is quite challenging to learn effective deterministic models. Since the probabilistic methods have shown to effectively emulate higher uncertainties for time-series predictions. To this end, we showcase effective utilisation of Denoising Diffusion Probabilistic Models (DDPM), to develop an architecture for providing better market predictions conditioned on the historical financial indicators and inter-stock relations. Additionally, we also provide a novel deterministic architecture MaTCHS which uses Masked Relational Transformer(MRT) to exploit inter-stock relations along with historical stock features. We demonstrate that our model achieves SOTA performance for movement predication and Portfolio management. ...

March 21, 2024 · 2 min · Research Team

Network Momentum across Asset Classes

Network Momentum across Asset Classes ArXiv ID: 2308.11294 “View on arXiv” Authors: Unknown Abstract We investigate the concept of network momentum, a novel trading signal derived from momentum spillover across assets. Initially observed within the confines of pairwise economic and fundamental ties, such as the stock-bond connection of the same company and stocks linked through supply-demand chains, momentum spillover implies a propagation of momentum risk premium from one asset to another. The similarity of momentum risk premium, exemplified by co-movement patterns, has been spotted across multiple asset classes including commodities, equities, bonds and currencies. However, studying the network effect of momentum spillover across these classes has been challenging due to a lack of readily available common characteristics or economic ties beyond the company level. In this paper, we explore the interconnections of momentum features across a diverse range of 64 continuous future contracts spanning these four classes. We utilise a linear and interpretable graph learning model with minimal assumptions to reveal the intricacies of the momentum spillover network. By leveraging the learned networks, we construct a network momentum strategy that exhibits a Sharpe ratio of 1.5 and an annual return of 22%, after volatility scaling, from 2000 to 2022. This paper pioneers the examination of momentum spillover across multiple asset classes using only pricing data, presents a multi-asset investment strategy based on network momentum, and underscores the effectiveness of this strategy through robust empirical analysis. ...

August 22, 2023 · 2 min · Research Team