false

Forecasting Equity Correlations with Hybrid Transformer Graph Neural Network

Forecasting Equity Correlations with Hybrid Transformer Graph Neural Network ArXiv ID: 2601.04602 “View on arXiv” Authors: Jack Fanshawe, Rumi Masih, Alexander Cameron Abstract This paper studies forward-looking stock-stock correlation forecasting for S&P 500 constituents and evaluates whether learned correlation forecasts can improve graph-based clustering used in basket trading strategies. We cast 10-day ahead correlation prediction in Fisher-z space and train a Temporal-Heterogeneous Graph Neural Network (THGNN) to predict residual deviations from a rolling historical baseline. The architecture combines a Transformer-based temporal encoder, which captures non-stationary, complex, temporal dependencies, with an edge-aware graph attention network that propagates cross-asset information over the equity network. Inputs span daily returns, technicals, sector structure, previous correlations, and macro signals, enabling regime-aware forecasts and attention-based feature and neighbor importance to provide interpretability. Out-of-sample results from 2019-2024 show that the proposed model meaningfully reduces correlation forecasting error relative to rolling-window estimates. When integrated into a graph-based clustering framework, forward-looking correlations produce adaptable and economically meaningfully baskets, particularly during periods of market stress. These findings suggest that improvements in correlation forecasts translate into meaningful gains during portfolio construction tasks. ...

January 8, 2026 · 2 min · Research Team

Trading Graph Neural Network

Trading Graph Neural Network ArXiv ID: 2504.07923 “View on arXiv” Authors: Unknown Abstract This paper proposes a new algorithm – Trading Graph Neural Network (TGNN) that can structurally estimate the impact of asset features, dealer features and relationship features on asset prices in trading networks. It combines the strength of the traditional simulated method of moments (SMM) and recent machine learning techniques – Graph Neural Network (GNN). It outperforms existing reduced-form methods with network centrality measures in prediction accuracy. The method can be used on networks with any structure, allowing for heterogeneity among both traders and assets. ...

April 10, 2025 · 2 min · Research Team

Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis

Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis ArXiv ID: 2502.15813 “View on arXiv” Authors: Unknown Abstract This paper presents a novel hybrid model that integrates long-short-term memory (LSTM) networks and Graph Neural Networks (GNNs) to significantly enhance the accuracy of stock market predictions. The LSTM component adeptly captures temporal patterns in stock price data, effectively modeling the time series dynamics of financial markets. Concurrently, the GNN component leverages Pearson correlation and association analysis to model inter-stock relational data, capturing complex nonlinear polyadic dependencies influencing stock prices. The model is trained and evaluated using an expanding window validation approach, enabling continuous learning from increasing amounts of data and adaptation to evolving market conditions. Extensive experiments conducted on historical stock data demonstrate that our hybrid LSTM-GNN model achieves a mean square error (MSE) of 0.00144, representing a substantial reduction of 10.6% compared to the MSE of the standalone LSTM model of 0.00161. Furthermore, the hybrid model outperforms traditional and advanced benchmarks, including linear regression, convolutional neural networks (CNN), and dense networks. These compelling results underscore the significant potential of combining temporal and relational data through a hybrid approach, offering a powerful tool for real-time trading and financial analysis. ...

February 19, 2025 · 2 min · Research Team

GRU-PFG: Extract Inter-Stock Correlation from Stock Factors with Graph Neural Network

GRU-PFG: Extract Inter-Stock Correlation from Stock Factors with Graph Neural Network ArXiv ID: 2411.18997 “View on arXiv” Authors: Unknown Abstract The complexity of stocks and industries presents challenges for stock prediction. Currently, stock prediction models can be divided into two categories. One category, represented by GRU and ALSTM, relies solely on stock factors for prediction, with limited effectiveness. The other category, represented by HIST and TRA, incorporates not only stock factors but also industry information, industry financial reports, public sentiment, and other inputs for prediction. The second category of models can capture correlations between stocks by introducing additional information, but the extra data is difficult to standardize and generalize. Considering the current state and limitations of these two types of models, this paper proposes the GRU-PFG (Project Factors into Graph) model. This model only takes stock factors as input and extracts inter-stock correlations using graph neural networks. It achieves prediction results that not only outperform the others models relies solely on stock factors, but also achieve comparable performance to the second category models. The experimental results show that on the CSI300 dataset, the IC of GRU-PFG is 0.134, outperforming HIST’s 0.131 and significantly surpassing GRU and Transformer, achieving results better than the second category models. Moreover as a model that relies solely on stock factors, it has greater potential for generalization. ...

November 28, 2024 · 2 min · Research Team

Dynamic graph neural networks for enhanced volatility prediction in financial markets

Dynamic graph neural networks for enhanced volatility prediction in financial markets ArXiv ID: 2410.16858 “View on arXiv” Authors: Unknown Abstract Volatility forecasting is essential for risk management and decision-making in financial markets. Traditional models like Generalized Autoregressive Conditional Heteroskedasticity (GARCH) effectively capture volatility clustering but often fail to model complex, non-linear interdependencies between multiple indices. This paper proposes a novel approach using Graph Neural Networks (GNNs) to represent global financial markets as dynamic graphs. The Temporal Graph Attention Network (Temporal GAT) combines Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) to capture the temporal and structural dynamics of volatility spillovers. By utilizing correlation-based and volatility spillover indices, the Temporal GAT constructs directed graphs that enhance the accuracy of volatility predictions. Empirical results from a 15-year study of eight major global indices show that the Temporal GAT outperforms traditional GARCH models and other machine learning methods, particularly in short- to mid-term forecasts. The sensitivity and scenario-based analysis over a range of parameters and hyperparameters further demonstrate the significance of the proposed technique. Hence, this work highlights the potential of GNNs in modeling complex market behaviors, providing valuable insights for financial analysts and investors. ...

October 22, 2024 · 2 min · Research Team

Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks

Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks ArXiv ID: 2407.15532 “View on arXiv” Authors: Unknown Abstract Apart from assessing individual asset performance, investors in financial markets also need to consider how a set of firms performs collectively as a portfolio. Whereas traditional Markowitz-based mean-variance portfolios are widespread, network-based optimisation techniques offer a more flexible tool to capture complex interdependencies between asset values. However, most of the existing studies do not contain firms at risk of default and remove any firms that drop off indices over a certain time. This is the first study to also incorporate such firms in portfolio optimisation on a large scale. We propose and empirically test a novel method that leverages Graph Attention networks (GATs), a subclass of Graph Neural Networks (GNNs). GNNs, as deep learning-based models, can exploit network data to uncover nonlinear relationships. Their ability to handle high-dimensional data and accommodate customised layers for specific purposes makes them appealing for large-scale problems such as mid- and small-cap portfolio optimisation. This study utilises 30 years of data on mid-cap firms, creating graphs of firms using distance correlation and the Triangulated Maximally Filtered Graph approach. These graphs are the inputs to a GAT model incorporating weight and allocation constraints and a loss function derived from the Sharpe ratio, thus focusing on maximising portfolio risk-adjusted returns. This new model is benchmarked against a network characteristic-based portfolio, a mean variance-based portfolio, and an equal-weighted portfolio. The results show that the portfolio produced by the GAT-based model outperforms all benchmarks and is consistently superior to other strategies over a long period, while also being informative of market dynamics. ...

July 22, 2024 · 3 min · Research Team

Advanced Financial Fraud Detection Using GNN-CL Model

Advanced Financial Fraud Detection Using GNN-CL Model ArXiv ID: 2407.06529 “View on arXiv” Authors: Unknown Abstract The innovative GNN-CL model proposed in this paper marks a breakthrough in the field of financial fraud detection by synergistically combining the advantages of graph neural networks (gnn), convolutional neural networks (cnn) and long short-term memory (LSTM) networks. This convergence enables multifaceted analysis of complex transaction patterns, improving detection accuracy and resilience against complex fraudulent activities. A key novelty of this paper is the use of multilayer perceptrons (MLPS) to estimate node similarity, effectively filtering out neighborhood noise that can lead to false positives. This intelligent purification mechanism ensures that only the most relevant information is considered, thereby improving the model’s understanding of the network structure. Feature weakening often plagues graph-based models due to the dilution of key signals. In order to further address the challenge of feature weakening, GNN-CL adopts reinforcement learning strategies. By dynamically adjusting the weights assigned to central nodes, it reinforces the importance of these influential entities to retain important clues of fraud even in less informative data. Experimental evaluations on Yelp datasets show that the results highlight the superior performance of GNN-CL compared to existing methods. ...

July 9, 2024 · 2 min · Research Team

GraphCNNpred: A stock market indices prediction using a Graph based deep learning system

GraphCNNpred: A stock market indices prediction using a Graph based deep learning system ArXiv ID: 2407.03760 “View on arXiv” Authors: Unknown Abstract The application of deep learning techniques for predicting stock market prices is a prominent and widely researched topic in the field of data science. To effectively predict market trends, it is essential to utilize a diversified dataset. In this paper, we give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of \text{“S”}&\text{“P”} 500, NASDAQ, DJI, NYSE, and RUSSEL. The experiments show that the associated models improve the performance of prediction in all indices over the baseline algorithms by about $4% \text{" to “} 15%$, in terms of F-measure. A trading simulation is generated from predictions and gained a Sharpe ratio of over 3. ...

July 4, 2024 · 2 min · Research Team

CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks

CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks ArXiv ID: 2402.14708 “View on arXiv” Authors: Unknown Abstract Credit card fraud poses a significant threat to the economy. While Graph Neural Network (GNN)-based fraud detection methods perform well, they often overlook the causal effect of a node’s local structure on predictions. This paper introduces a novel method for credit card fraud detection, the \textbf{"\underline{Ca"}}usal \textbf{"\underline{T"}}emporal \textbf{"\underline{G"}}raph \textbf{"\underline{N"}}eural \textbf{“N”}etwork (CaT-GNN), which leverages causal invariant learning to reveal inherent correlations within transaction data. By decomposing the problem into discovery and intervention phases, CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model’s robustness and interpretability. CaT-GNN consists of two key components: Causal-Inspector and Causal-Intervener. The Causal-Inspector utilizes attention weights in the temporal attention mechanism to identify causal and environment nodes without introducing additional parameters. Subsequently, the Causal-Intervener performs a causal mixup enhancement on environment nodes based on the set of nodes. Evaluated on three datasets, including a private financial dataset and two public datasets, CaT-GNN demonstrates superior performance over existing state-of-the-art methods. Our findings highlight the potential of integrating causal reasoning with graph neural networks to improve fraud detection capabilities in financial transactions. ...

February 22, 2024 · 2 min · Research Team

Detecting Anomalous Events in Object-centric Business Processes via Graph Neural Networks

Detecting Anomalous Events in Object-centric Business Processes via Graph Neural Networks ArXiv ID: 2403.00775 “View on arXiv” Authors: Unknown Abstract Detecting anomalies is important for identifying inefficiencies, errors, or fraud in business processes. Traditional process mining approaches focus on analyzing ‘flattened’, sequential, event logs based on a single case notion. However, many real-world process executions exhibit a graph-like structure, where events can be associated with multiple cases. Flattening event logs requires selecting a single case identifier which creates a gap with the real event data and artificially introduces anomalies in the event logs. Object-centric process mining avoids these limitations by allowing events to be related to different cases. This study proposes a novel framework for anomaly detection in business processes that exploits graph neural networks and the enhanced information offered by object-centric process mining. We first reconstruct and represent the process dependencies of the object-centric event logs as attributed graphs and then employ a graph convolutional autoencoder architecture to detect anomalous events. Our results show that our approach provides promising performance in detecting anomalies at the activity type and attributes level, although it struggles to detect anomalies in the temporal order of events. ...

February 14, 2024 · 2 min · Research Team